Rewrite symmetric groups
This commit is contained in:
35
src/Advanced/Symmetric Groups/main.typ
Normal file
35
src/Advanced/Symmetric Groups/main.typ
Normal file
@ -0,0 +1,35 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: handout.with(
|
||||
title: [Symmetric Groups],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#include "parts/00 intro.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/01 cycle.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/02 groups.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/03 subgroup.typ"
|
||||
#pagebreak()
|
||||
|
||||
= Bonus problems
|
||||
|
||||
#problem()
|
||||
Show that $x in ZZ^+$ has a multiplicative inverse mod $n$ iff $gcd(x, n) = 1$
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Let $sigma = (sigma_1 sigma_2 ... sigma_k)$ be a $k$-cycle in $S_n$, and let $tau$ be an arbitrary element of $S_n$. \
|
||||
Show that $tau sigma tau^(-1)$ = $(tau(sigma_1), tau(sigma_2), ..., tau(sigma_k))$ \
|
||||
#hint[$tau$ is a permutation, so $tau(x)$ is the value at position $x$ after applying $tau$.]
|
||||
|
||||
#v(1fr)
|
||||
#problem()
|
||||
Show that the set ${ (1, 2), (1,2,...,n)}$ generates $S_n$.
|
||||
#v(1fr)
|
Reference in New Issue
Block a user