Quantum edits
This commit is contained in:
@ -44,6 +44,55 @@
|
||||
\input{parts/02.00 half a qubit}
|
||||
\input{parts/02.01 two halves}
|
||||
\input{parts/03.00 logic gates}
|
||||
%\input{parts/03.01 quantum gates}
|
||||
\input{parts/03.01 quantum gates}
|
||||
|
||||
\end{document}
|
||||
\end{document}
|
||||
|
||||
\problem{}
|
||||
The SWAP gate swaps two bits: $\text{SWAP}\ket{ab} = \ket{ba}$. \par
|
||||
Find its matrix.
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\text{SWAP} = \begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 0 & 1 \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% \problem{}
|
||||
% The $T$ gate is a three-bit gate that inverts its right bit iff its left and middle inputs are both $\ket{1}$. \par
|
||||
% In other words, $T\ket{11x} = \ket{11}\ket{\text{not } x}$, and $T\ket{abx} = \ket{abx}$ for all other inputs. \par
|
||||
% Find the $T$ gate's matrix. \par
|
||||
% \note{
|
||||
% This gate is particularly interesting because it's a \textit{universal quantum gate}: \\
|
||||
% like NOR and NAND in classical logic, any quantum gate may emulated by only applying $T$ gates.
|
||||
% }
|
||||
%
|
||||
% \begin{solution}
|
||||
% \begin{equation*}
|
||||
% \text{T} = \begin{bmatrix}
|
||||
% 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
|
||||
% 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
|
||||
% 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
|
||||
% 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
|
||||
% 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
|
||||
% 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
|
||||
% 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
|
||||
% 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
|
||||
% \end{bmatrix}
|
||||
% \end{equation*}
|
||||
% \end{solution}
|
Reference in New Issue
Block a user