Started definable sets handout
This commit is contained in:
		
							
								
								
									
										28
									
								
								Advanced/Definable Sets/main.tex
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										28
									
								
								Advanced/Definable Sets/main.tex
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,28 @@
 | 
				
			|||||||
 | 
					% use [nosolutions] flag to hide solutions.
 | 
				
			||||||
 | 
					% use [solutions] flag to show solutions.
 | 
				
			||||||
 | 
					\documentclass[
 | 
				
			||||||
 | 
						solutions,
 | 
				
			||||||
 | 
						singlenumbering
 | 
				
			||||||
 | 
					]{../../resources/ormc_handout}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% Typewriter tabs
 | 
				
			||||||
 | 
					\usepackage{tabto}
 | 
				
			||||||
 | 
					\TabPositions{1cm, 2cm, 3cm, 4cm, 5cm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% for \coloneqq, a centered :=
 | 
				
			||||||
 | 
					\usepackage{mathtools}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{document}
 | 
				
			||||||
 | 
						\maketitle
 | 
				
			||||||
 | 
							<Advanced 2>
 | 
				
			||||||
 | 
							<Spring 2023>
 | 
				
			||||||
 | 
							{Definable Sets}
 | 
				
			||||||
 | 
							{
 | 
				
			||||||
 | 
								Prepared by Mark on \today
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\input{parts/0 logic.tex}
 | 
				
			||||||
 | 
						\input{parts/1 structures.tex}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\end{document}
 | 
				
			||||||
							
								
								
									
										102
									
								
								Advanced/Definable Sets/parts/0 logic.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										102
									
								
								Advanced/Definable Sets/parts/0 logic.tex
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,102 @@
 | 
				
			|||||||
 | 
					\section{Logical Algebra}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{}
 | 
				
			||||||
 | 
					Odds are, you are familiar with \textit{logical symbols}. \par
 | 
				
			||||||
 | 
					In this handout, we'll use the following:
 | 
				
			||||||
 | 
					\begin{itemize}
 | 
				
			||||||
 | 
						\item $\lnot$: not
 | 
				
			||||||
 | 
						\item $\land$: and
 | 
				
			||||||
 | 
						\item $\lor$: or
 | 
				
			||||||
 | 
						\item $\rightarrow$: implies
 | 
				
			||||||
 | 
						\item $()$, parenthesis.
 | 
				
			||||||
 | 
					\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The function of these is defined by \textit{truth tables}:
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
					\begin{tabular}{ c | c | c }
 | 
				
			||||||
 | 
						\multicolumn{3}{ c }{and} \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
							$A$ & $B$ & $A \land B$ \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
						F & F & F \\
 | 
				
			||||||
 | 
						F & T & F \\
 | 
				
			||||||
 | 
						T & F & F \\
 | 
				
			||||||
 | 
						T & T & T
 | 
				
			||||||
 | 
					\end{tabular}
 | 
				
			||||||
 | 
					\hfill
 | 
				
			||||||
 | 
					\begin{tabular}{ c | c | c }
 | 
				
			||||||
 | 
						\multicolumn{3}{ c }{or} \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
							$A$ & $B$ & $A \lor B$ \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
						F & F & F \\
 | 
				
			||||||
 | 
						F & T & T \\
 | 
				
			||||||
 | 
						T & F & T \\
 | 
				
			||||||
 | 
						T & T & T
 | 
				
			||||||
 | 
					\end{tabular}
 | 
				
			||||||
 | 
					\hfill
 | 
				
			||||||
 | 
					\begin{tabular}{ c | c | c }
 | 
				
			||||||
 | 
						\multicolumn{3}{ c }{implies} \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
							$A$ & $B$ & $A \rightarrow B$ \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
						F & F & T \\
 | 
				
			||||||
 | 
						F & T & T \\
 | 
				
			||||||
 | 
						T & F & F \\
 | 
				
			||||||
 | 
						T & T & T
 | 
				
			||||||
 | 
					\end{tabular}
 | 
				
			||||||
 | 
					\hfill
 | 
				
			||||||
 | 
					\begin{tabular}{ c | c }
 | 
				
			||||||
 | 
						\multicolumn{2}{ c }{not} \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
							$A$ & $\lnot A$ \\
 | 
				
			||||||
 | 
						\hline
 | 
				
			||||||
 | 
						T & F \\
 | 
				
			||||||
 | 
						F & T \\
 | 
				
			||||||
 | 
						~ & ~ \\
 | 
				
			||||||
 | 
						~ & ~ \\
 | 
				
			||||||
 | 
					\end{tabular}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$A \land B$ is only true if both $A$ and $B$ are true. $A \lor B$ is only true if $A$ or $B$ (or both) are true. \par
 | 
				
			||||||
 | 
					$\lnot A$ is the opposite of $A$, which is why it looks like a \say{negative} sign. \par
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$A \rightarrow B$ is a bit harder to understand. Read aloud, this is \say{$A$ implies $B$.} \par
 | 
				
			||||||
 | 
					The only time $\rightarrow$ is false is when $T \rightarrow F$. Think about it: why does this make sense? \par
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Evaluate the following.
 | 
				
			||||||
 | 
					\begin{itemize}
 | 
				
			||||||
 | 
						\item $(T \land F) \lor T$
 | 
				
			||||||
 | 
						\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
 | 
				
			||||||
 | 
						\item $A \rightarrow T$ for any $A$
 | 
				
			||||||
 | 
						\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A,B$
 | 
				
			||||||
 | 
					\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
 | 
				
			||||||
 | 
					\hint{Use a truth table}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Can you express $A \lor B$ using only $\lnot$, $\rightarrow$, and $()$?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{solution}
 | 
				
			||||||
 | 
						$((\lnot A) \rightarrow B)$
 | 
				
			||||||
 | 
					\end{solution}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Note that both $\land$ and $\lor$ can be defined using the other logical symbols. \par
 | 
				
			||||||
 | 
					The only logical symbols we \textit{need} are $\lnot$, $\rightarrow$, and $()$. \par
 | 
				
			||||||
 | 
					We include $\land$ and $\lor$ to simplify our logical expressions.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
							
								
								
									
										130
									
								
								Advanced/Definable Sets/parts/1 structures.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										130
									
								
								Advanced/Definable Sets/parts/1 structures.tex
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,130 @@
 | 
				
			|||||||
 | 
					\section{Structures}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{}<def:language>
 | 
				
			||||||
 | 
					A \textit{language} is a set of meaningless symbols. Here are a few examples:
 | 
				
			||||||
 | 
					\begin{itemize}
 | 
				
			||||||
 | 
						\item $\{a, b, ..., z\}$
 | 
				
			||||||
 | 
						\item $\{0, 1\}$
 | 
				
			||||||
 | 
						\item $\mathbb{Z}$, $\mathbb{R}$, etc.
 | 
				
			||||||
 | 
					\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Every language comes with the equality check $=$, which checks if two elements are the same.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{}
 | 
				
			||||||
 | 
					A \textit{structure} over a language $\mathcal{L}$ consists of three sets:
 | 
				
			||||||
 | 
					\begin{itemize}
 | 
				
			||||||
 | 
						\item A set of \textit{constant symbols} $\mathcal{C}$ \par
 | 
				
			||||||
 | 
							Constant symbols let us specify specific elements of our language. \par
 | 
				
			||||||
 | 
							$\mathcal{C}$ must thus be a subset of $\mathcal{L}$.
 | 
				
			||||||
 | 
							\vspace{3mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\item A set of \textit{function symbols} $\mathcal{F}$ \par
 | 
				
			||||||
 | 
							Function symbols let us navigate between elements of our language. \par
 | 
				
			||||||
 | 
							$+$, $-$ are functions, as are $\sin{x}$, $\cos{x}$, and $\sqrt{x}$ \par
 | 
				
			||||||
 | 
							Functions take inputs in $\mathcal{L}$ and produce outputs in $\mathcal{L}$.
 | 
				
			||||||
 | 
							\vspace{3mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\item A set of \textit{relation symbols} $\mathcal{R}$ \par
 | 
				
			||||||
 | 
							Relation symbols let us compare elements of our language. \par
 | 
				
			||||||
 | 
							You are already familiar with this concept: $>$, $<$, and $\leq$ are relation symbols. \par
 | 
				
			||||||
 | 
							$=$ is \textbf{not} a relational symbol. Why? \hint{See \ref{def:language}}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The purpose of a structure is to give a language meaning. This is best explained by example.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{3mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\example{}
 | 
				
			||||||
 | 
					\def\structgeneric{\ensuremath{}}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					The first structure we'll look at is the following:
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
						\Bigl(
 | 
				
			||||||
 | 
							\mathcal{L} ~\big|~ \{\mathcal{C}, ~ \mathcal{F}, ~ \mathcal{R}\}
 | 
				
			||||||
 | 
						\Bigr)
 | 
				
			||||||
 | 
						=
 | 
				
			||||||
 | 
						\Bigl( \mathbb{Z} ~\big|~ \{0, 1, ~ +, -, ~ <\} \Bigr)
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					This is a structure over $\mathbb{Z}$ with the following symbols:
 | 
				
			||||||
 | 
					\begin{itemize}
 | 
				
			||||||
 | 
						\item $\mathcal{C} = \{0, 1\}$   \tab \note{(constants)}
 | 
				
			||||||
 | 
						\item $\mathcal{F} = \{+, -\}$   \tab \note{(functions)}
 | 
				
			||||||
 | 
						\item $\mathcal{R} = \{<\}$      \tab \note{(relations)}
 | 
				
			||||||
 | 
					\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Let's look at $\mathcal{C}$, our set of constant symbols. The only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools the structure offers.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{1mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Say we want the number 2. We could use the function $+$ to define it: $2 \coloneqq [x \text{ where } 1 + 1 = x]$ \par
 | 
				
			||||||
 | 
					We would write this as $2 \coloneqq [x \text{ where } +(1, 1) = x]$ in proper \say{functional} notation.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Can we define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)$? If so, how?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Can we define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, +, -, <\} \Bigr)$? \par
 | 
				
			||||||
 | 
					\hint{In this problem, $1$ has been removed from the set of constant symbols.}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Let us formalize what we found in the previous two problems. \par
 | 
				
			||||||
 | 
					\say{Definable elements} are one of the two most important ideas in this handout.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{}
 | 
				
			||||||
 | 
					A \textit{formula} in a structure $S$ is a well-formed string of constants, functions, and relations. \par
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					You already know what a \say{well-formed} string is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par
 | 
				
			||||||
 | 
					For the sake of time, I will not provide a formal definition. It isn't particularly interesting.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{Definable Elements}
 | 
				
			||||||
 | 
					Say $S$ is a structure over a language $\mathcal{L}$. \par
 | 
				
			||||||
 | 
					We say an element $e$ of $\mathcal{L}$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{solution}
 | 
				
			||||||
 | 
						No. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
 | 
				
			||||||
 | 
						We have no way to distinguish between negative and positive numbers.
 | 
				
			||||||
 | 
					\end{solution}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$? \par
 | 
				
			||||||
 | 
					\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{solution}
 | 
				
			||||||
 | 
						Yes! $-2$ no longer exists, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
 | 
				
			||||||
 | 
					\end{solution}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					What is definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{solution}
 | 
				
			||||||
 | 
						All powers of two, positive and negative.
 | 
				
			||||||
 | 
					\end{solution}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
		Reference in New Issue
	
	Block a user