Linear Algebra edits
This commit is contained in:
81
Advanced/Linear Algebra 101/parts/1 vectors.tex
Executable file
81
Advanced/Linear Algebra 101/parts/1 vectors.tex
Executable file
@@ -0,0 +1,81 @@
|
||||
\section{Vectors}
|
||||
|
||||
\definition{}
|
||||
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
|
||||
As you may already know, we have a few operations on vectors:
|
||||
\begin{itemize}
|
||||
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
|
||||
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
|
||||
\end{itemize}
|
||||
\note{
|
||||
The above examples are for $\mathbb{R}^2$, and each vector thus has two components. \\
|
||||
These operations are similar for all other $n$.
|
||||
}
|
||||
|
||||
\problem{}
|
||||
Compute the following or explain why you can't:
|
||||
\begin{itemize}
|
||||
\item $[1, 2, 3] - [1, 3, 4]$ \note{Subtraction works just like addition.}
|
||||
\item $4 \times [5, 2, 4]$
|
||||
\item $a + b$, where $a \in \mathbb{R}
|
||||
^5$ and $b \in \mathbb{R}^7$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Consider $(2, -1)$ and $(3, 1)$ in $\mathbb{R}^2$. \\
|
||||
Can you develop geometric intuition for their sum and difference?
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
|
||||
\draw[->]
|
||||
(0,0) coordinate (o) -- node[below left] {$(1, 2)$}
|
||||
(2, -1) coordinate (a)
|
||||
;
|
||||
|
||||
\draw[->]
|
||||
(a) -- node[below right] {$(3, 1)$}
|
||||
(5, 0) coordinate (b)
|
||||
;
|
||||
|
||||
\draw[
|
||||
draw = gray,
|
||||
text = gray,
|
||||
->
|
||||
]
|
||||
(o) -- node[above] {$??$}
|
||||
(b) coordinate (s)
|
||||
;
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{Euclidean Norm}
|
||||
In general, a \textit{norm} on $\mathbb{R}^n$ is a map from $\mathbb{R}^n$ to $\mathbb{R}^+_0$ \\
|
||||
Usually, one thinks of a norm as a \say{length metric} on a vector space. \\
|
||||
The norm of a vector $v$ is written $||v||$. \\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We usually use the \textit{euclidean norm} when we work in $\mathbb{R}^n$. \\
|
||||
If $v \in \mathbb{R}^n$, the euclidean norm is defined as follows:
|
||||
$$
|
||||
||v|| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}
|
||||
$$
|
||||
This is simply an application of the pythagorean theorem.
|
||||
|
||||
\problem{}
|
||||
Compute the euclidean norm of
|
||||
\begin{itemize}
|
||||
\item $[2, 3]$
|
||||
\item $[-2, 1, -4, 2]$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
Reference in New Issue
Block a user