@ -35,7 +35,9 @@ Then, decode the following:
|
||||
|
||||
\begin{solution}
|
||||
|
||||
% spell:off
|
||||
\texttt{ABCD$\cdot$ABCD$\cdot$BABABA$\cdot$ABCD$\cdot$ABCD} becomes \texttt{[ABCD<4, 4> BA<2,4> ABCD<4,4>]}.
|
||||
% spell:on
|
||||
|
||||
\linehack{}
|
||||
|
||||
|
@ -256,7 +256,8 @@ Now, do the opposite: draw a tree that encodes \texttt{DEACBDD} \textit{less} ef
|
||||
|
||||
\remark{}
|
||||
As we just saw, constructing a prefix-free code is fairly easy. \par
|
||||
Constucting the \textit{most efficient} prefix-free code for a given message is a bit more difficult. \par
|
||||
Constructing the \textit{most efficient} prefix-free code for a
|
||||
given message is a bit more difficult. \par
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user