Rearranged Linear Maps
This commit is contained in:
parent
81328c02e2
commit
5b08e1d224
@ -3,7 +3,7 @@
|
|||||||
\documentclass[
|
\documentclass[
|
||||||
solutions,
|
solutions,
|
||||||
nowarning,
|
nowarning,
|
||||||
%singlenumbering
|
singlenumbering
|
||||||
]{../../resources/ormc_handout}
|
]{../../resources/ormc_handout}
|
||||||
|
|
||||||
\usepackage{tikz}
|
\usepackage{tikz}
|
||||||
@ -39,50 +39,11 @@
|
|||||||
Prepared by Mark on \today \\
|
Prepared by Mark on \today \\
|
||||||
}
|
}
|
||||||
|
|
||||||
\input{parts/0 fields}
|
%\input{parts/? fields}
|
||||||
\input{parts/1 spaces}
|
%\input{parts/? spaces}
|
||||||
\input{parts/2 linear}
|
|
||||||
\input{parts/3 matrices}
|
|
||||||
|
|
||||||
|
\input{parts/0 intro}
|
||||||
\section{Norms}
|
\input{parts/1 linear}
|
||||||
|
\input{parts/2 matrices}
|
||||||
\definition{}
|
|
||||||
If $V$ is a vector space, a \textit{norm} in $V$ is a function $V \to \mathbb{R}^+$ that satisfies the following properties, \\
|
|
||||||
Where $x, y \in V$ and $c \in F$:
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item Absolute Homogeneity: $||cx|| = |c|~||x||$
|
|
||||||
\item Positive-Definite: $||x|| \geq 0$ with equality iff $x = 0$.
|
|
||||||
\item Triangle Inequalty: $||x+y|| \leq ||x|| + ||y||$
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that the \textit{euclidian norm} defined by $||~[a, b]~|| = \sqrt{a^2 + b^2}$ is a norm on $\mathbb{R}^2$
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that in any vector space with an inner product, the \textit{induced norm} $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that every norm satisfies the reverse triangle inequality:
|
|
||||||
|
|
||||||
$$
|
|
||||||
||x - y|| \geq |~||x|| - ||y||~|
|
|
||||||
$$
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Prove the Cauchy-Schwartz inequality:
|
|
||||||
|
|
||||||
$$
|
|
||||||
||\langle x, y \rangle|| = ||x||~||y||
|
|
||||||
$$
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
6
Advanced/Linear Maps/parts/0 intro.tex
Normal file
6
Advanced/Linear Maps/parts/0 intro.tex
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
\section{Intro}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
58
Advanced/Linear Maps/parts/1 linear.tex
Normal file
58
Advanced/Linear Maps/parts/1 linear.tex
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
\section{Linear Maps}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
|
||||||
|
|
||||||
|
|
||||||
|
\definition{}<lineardef>
|
||||||
|
Let $f: U \to V$ be a map. \\
|
||||||
|
We say $f$ is \textit{linear} if it satisfies the following for any $u \in U$, $v \in V$, $a \in \mathbb{R}$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $f(u + v) = f(u) + f(v)$
|
||||||
|
\item $f(au) = af(u)$
|
||||||
|
\end{itemize}
|
||||||
|
In other words, $f$ is linear if it is \say{closed} under addition and scalar multiplication.
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
It is often convenient to combine the two conditions above into one. \\
|
||||||
|
Show that $f(au + v) = af(u) + f(v)$ iff $f$ is linear. Use \ref{lineardef}.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Is $f(x) = mx + b$ a linear map?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
In general, what does a linear map in $\mathbb{R} \to \mathbb{R}$ look like?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Is the map ${median}(v): \mathbb{R}^3 \to \mathbb{R}$ linear? \\
|
||||||
|
\hint{$median([3, 5, 4]) = 4$, but you already knew that.}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Is the map $f(v): \mathbb{R}^3 \to \mathbb{R}$ defined by $f(v) = v_0 + 2v_1 + v_2$ linear? \\
|
||||||
|
\hint{$v_n$ is the $n^\text{th}$ element of $v$. $v$ is a 3-element vector.}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? \\
|
||||||
|
\vspace{1mm}
|
||||||
|
\hint{$\mathbb{P}^n$ is the set of polynomials with degree at most $n$.}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
In general, what does a linear map from $\mathbb{R}^m \to \mathbb{R}^n$ look like?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
@ -1,38 +0,0 @@
|
|||||||
\section{Linear Transformations}
|
|
||||||
|
|
||||||
\definition{}
|
|
||||||
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
|
|
||||||
|
|
||||||
|
|
||||||
\definition{}
|
|
||||||
Let $V$ and $U$ be vector spaces, and let $f: V \to U$ be a map from $V$ to $U$. \\
|
|
||||||
We say $f$ is \textit{linear} if it satisfies the following for any $v \in V$, $u \in U$, $a \in \mathbb{R}$:
|
|
||||||
\begin{itemize}
|
|
||||||
\item $f(u + v) = f(u) + f(v)$
|
|
||||||
\item $f(au) = af(u)$
|
|
||||||
\end{itemize}
|
|
||||||
In other words, $f$ is linear if it is \say{closed} under addition and scalar multiplication.
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
It is often convenient to combine the two conditions above into one. \\
|
|
||||||
Show that $f(au + v) = af(u) + f(v)$ iff $f$ is linear.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Is $f(x) = mx + b$ a linear map on $\mathbb{R}$?
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
In general, what does a linear map $\mathbb{R} \to \mathbb{R}$ look like?
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Is the map ${median}(v): \mathbb{R}^3 \to \mathbb{R}$ linear? \\
|
|
||||||
\hint{$median([3, 5, 4]) = 4$, but you already knew that.}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
34
Advanced/Linear Maps/parts/2 matrices.tex
Normal file
34
Advanced/Linear Maps/parts/2 matrices.tex
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
\section{Matrices}
|
||||||
|
|
||||||
|
\theorem{}<thebigtheorem>
|
||||||
|
Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\
|
||||||
|
Conversely, every $n \times m$ matrix represents a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
In other words, \textbf{matrices are linear transformations}. \\
|
||||||
|
The next two problems provide a proof.
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}<prooffwd>
|
||||||
|
Let $A$ be an $m \times n$ matrix, and $v$ an $m \times 1$ vector. \\
|
||||||
|
Show that the map $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}<proofback>
|
||||||
|
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}(p)$. \\
|
||||||
|
Find a matrix that corresponds to $D$. \\
|
||||||
|
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
@ -1,209 +0,0 @@
|
|||||||
\section{Matrices}
|
|
||||||
|
|
||||||
\definition{}
|
|
||||||
A \textit{matrix} is a two-dimensional array of numbers: \\
|
|
||||||
$$
|
|
||||||
A =
|
|
||||||
\begin{bmatrix}
|
|
||||||
1 & 2 & 3 \\
|
|
||||||
4 & 5 & 6
|
|
||||||
\end{bmatrix}
|
|
||||||
$$
|
|
||||||
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
|
||||||
|
|
||||||
\definition{}
|
|
||||||
We can define the product of a matrix $A$ and a vector $v$:
|
|
||||||
|
|
||||||
$$
|
|
||||||
Av =
|
|
||||||
\begin{bmatrix}
|
|
||||||
1 & 2 & 3 \\
|
|
||||||
4 & 5 & 6
|
|
||||||
\end{bmatrix}
|
|
||||||
\begin{bmatrix}
|
|
||||||
a \\ b \\ c
|
|
||||||
\end{bmatrix}
|
|
||||||
=
|
|
||||||
\begin{bmatrix}
|
|
||||||
1a + 2b + 3c \\
|
|
||||||
4a + 5b + 6c
|
|
||||||
\end{bmatrix}
|
|
||||||
$$
|
|
||||||
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
|
||||||
|
|
||||||
$$
|
|
||||||
Av =
|
|
||||||
\begin{bmatrix}
|
|
||||||
\text{---} a_1 \text{---} \\
|
|
||||||
\text{---} a_2 \text{---}
|
|
||||||
\end{bmatrix}
|
|
||||||
\begin{bmatrix}
|
|
||||||
| \\
|
|
||||||
v \\
|
|
||||||
| \\
|
|
||||||
\end{bmatrix}
|
|
||||||
=
|
|
||||||
\begin{bmatrix}
|
|
||||||
r_1v \\
|
|
||||||
r_2v
|
|
||||||
\end{bmatrix}
|
|
||||||
$$
|
|
||||||
|
|
||||||
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Compute the following:
|
|
||||||
|
|
||||||
$$
|
|
||||||
\begin{bmatrix}
|
|
||||||
1 & 2 \\
|
|
||||||
3 & 4 \\
|
|
||||||
5 & 6
|
|
||||||
\end{bmatrix}
|
|
||||||
\begin{bmatrix}
|
|
||||||
5 \\ 3
|
|
||||||
\end{bmatrix}
|
|
||||||
$$
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
|
|
||||||
\generic{Remark:}
|
|
||||||
It is a bit more interesting to think of matrix-vector multiplication in the following way: \\
|
|
||||||
|
|
||||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
|
||||||
\begin{center}
|
|
||||||
The problem:
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
$$
|
|
||||||
\begin{bmatrix}
|
|
||||||
1 & 2 \\
|
|
||||||
3 & 4 \\
|
|
||||||
5 & 6
|
|
||||||
\end{bmatrix}
|
|
||||||
\begin{bmatrix}
|
|
||||||
5 \\ 3
|
|
||||||
\end{bmatrix}
|
|
||||||
=
|
|
||||||
\begin{bmatrix}
|
|
||||||
11 \\ 27 \\ 43
|
|
||||||
\end{bmatrix}
|
|
||||||
$$
|
|
||||||
\end{center}
|
|
||||||
\end{minipage}%
|
|
||||||
\hfill
|
|
||||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
|
||||||
\begin{center}
|
|
||||||
Top-input, right-output:
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
\begin{tikzpicture}[>=stealth,thick,baseline]
|
|
||||||
\matrix [
|
|
||||||
matrix of math nodes,
|
|
||||||
left delimiter={[},
|
|
||||||
right delimiter={]}
|
|
||||||
] (A) {
|
|
||||||
1 & 2 \\
|
|
||||||
3 & 4 \\
|
|
||||||
5 & 6 \\
|
|
||||||
};
|
|
||||||
|
|
||||||
\node[
|
|
||||||
fit=(A-1-1)(A-1-1),
|
|
||||||
inner xsep=0mm,inner ysep=3mm,
|
|
||||||
label=above:5
|
|
||||||
] (L) {};
|
|
||||||
\draw[->, gray] (L.north) -- ([yshift=0mm]A-1-1.north);
|
|
||||||
|
|
||||||
\node[
|
|
||||||
fit=(A-1-2)(A-1-2),
|
|
||||||
inner xsep=0mm,inner ysep=3mm,
|
|
||||||
label=above:3
|
|
||||||
] (R) {};
|
|
||||||
\draw[->, gray] (R.north) -- ([yshift=0mm]A-1-2.north);
|
|
||||||
|
|
||||||
|
|
||||||
\node[
|
|
||||||
fit=(A-1-2)(A-1-2),
|
|
||||||
inner xsep=8mm,inner ysep=0mm,
|
|
||||||
label=right:{$5 + 6 = 11$}
|
|
||||||
](Y) {};
|
|
||||||
\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y);
|
|
||||||
|
|
||||||
\node[
|
|
||||||
fit=(A-2-2)(A-2-2),
|
|
||||||
inner xsep=8mm,inner ysep=0mm,
|
|
||||||
label=right:{$15 + 12 = 27$}
|
|
||||||
](H) {};
|
|
||||||
\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H);
|
|
||||||
|
|
||||||
\node[
|
|
||||||
fit=(A-3-2)(A-3-2),
|
|
||||||
inner xsep=8mm,inner ysep=0mm,
|
|
||||||
label=right:{$25 + 18 = 43$}
|
|
||||||
](N) {};
|
|
||||||
\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N);
|
|
||||||
\end{tikzpicture}
|
|
||||||
\end{center}
|
|
||||||
\end{minipage}%
|
|
||||||
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
This is only a model for intuition, though. \\
|
|
||||||
Make sure you understand the dot product definition on the previous page.
|
|
||||||
|
|
||||||
\vspace{5mm}
|
|
||||||
|
|
||||||
\theorem{}<thebigtheorem>
|
|
||||||
Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\
|
|
||||||
Conversely, every $n \times m$ matrix represents a liner map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\
|
|
||||||
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
In other words, \textbf{matrices are linear transformations}.
|
|
||||||
\problem{}<prooffwd>
|
|
||||||
Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
|
|
||||||
\hint{What is $A$? What is $v$? What are their sizes?}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}<proofback>
|
|
||||||
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that $\mathbb{P}^n$ is a vector space.
|
|
||||||
\hint{$\mathbb{P}^n$ is the set of all polynomials of degree $ \leq n$.}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? \\
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}(p)$. \\
|
|
||||||
Find a matrix that corresponds to $D$. \\
|
|
||||||
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?}
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that the set of all linear maps $\mathbb{R}^n \to \mathbb{R}^m$ is a vector space.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
Loading…
x
Reference in New Issue
Block a user