Rearranged Linear Maps

This commit is contained in:
Mark 2023-04-17 11:34:36 -07:00
parent 81328c02e2
commit 5b08e1d224
8 changed files with 104 additions and 292 deletions

View File

@ -3,7 +3,7 @@
\documentclass[ \documentclass[
solutions, solutions,
nowarning, nowarning,
%singlenumbering singlenumbering
]{../../resources/ormc_handout} ]{../../resources/ormc_handout}
\usepackage{tikz} \usepackage{tikz}
@ -39,50 +39,11 @@
Prepared by Mark on \today \\ Prepared by Mark on \today \\
} }
\input{parts/0 fields} %\input{parts/? fields}
\input{parts/1 spaces} %\input{parts/? spaces}
\input{parts/2 linear}
\input{parts/3 matrices}
\input{parts/0 intro}
\section{Norms} \input{parts/1 linear}
\input{parts/2 matrices}
\definition{}
If $V$ is a vector space, a \textit{norm} in $V$ is a function $V \to \mathbb{R}^+$ that satisfies the following properties, \\
Where $x, y \in V$ and $c \in F$:
\begin{itemize}
\item Absolute Homogeneity: $||cx|| = |c|~||x||$
\item Positive-Definite: $||x|| \geq 0$ with equality iff $x = 0$.
\item Triangle Inequalty: $||x+y|| \leq ||x|| + ||y||$
\end{itemize}
\problem{}
Show that the \textit{euclidian norm} defined by $||~[a, b]~|| = \sqrt{a^2 + b^2}$ is a norm on $\mathbb{R}^2$
\vfill
\problem{}
Show that in any vector space with an inner product, the \textit{induced norm} $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.
\vfill
\problem{}
Show that every norm satisfies the reverse triangle inequality:
$$
||x - y|| \geq |~||x|| - ||y||~|
$$
\vfill
\problem{}
Prove the Cauchy-Schwartz inequality:
$$
||\langle x, y \rangle|| = ||x||~||y||
$$
\vfill
\end{document} \end{document}

View File

@ -0,0 +1,6 @@
\section{Intro}
\vfill
\pagebreak

View File

@ -0,0 +1,58 @@
\section{Linear Maps}
\definition{}
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
\definition{}<lineardef>
Let $f: U \to V$ be a map. \\
We say $f$ is \textit{linear} if it satisfies the following for any $u \in U$, $v \in V$, $a \in \mathbb{R}$:
\begin{itemize}
\item $f(u + v) = f(u) + f(v)$
\item $f(au) = af(u)$
\end{itemize}
In other words, $f$ is linear if it is \say{closed} under addition and scalar multiplication.
\problem{}
It is often convenient to combine the two conditions above into one. \\
Show that $f(au + v) = af(u) + f(v)$ iff $f$ is linear. Use \ref{lineardef}.
\vfill
\problem{}
Is $f(x) = mx + b$ a linear map?
\vfill
\problem{}
In general, what does a linear map in $\mathbb{R} \to \mathbb{R}$ look like?
\vfill
\pagebreak
\problem{}
Is the map ${median}(v): \mathbb{R}^3 \to \mathbb{R}$ linear? \\
\hint{$median([3, 5, 4]) = 4$, but you already knew that.}
\vfill
\problem{}
Is the map $f(v): \mathbb{R}^3 \to \mathbb{R}$ defined by $f(v) = v_0 + 2v_1 + v_2$ linear? \\
\hint{$v_n$ is the $n^\text{th}$ element of $v$. $v$ is a 3-element vector.}
\vfill
\problem{}
Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? \\
\vspace{1mm}
\hint{$\mathbb{P}^n$ is the set of polynomials with degree at most $n$.}
\vfill
\problem{}
In general, what does a linear map from $\mathbb{R}^m \to \mathbb{R}^n$ look like?
\vfill
\pagebreak

View File

@ -1,38 +0,0 @@
\section{Linear Transformations}
\definition{}
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
\definition{}
Let $V$ and $U$ be vector spaces, and let $f: V \to U$ be a map from $V$ to $U$. \\
We say $f$ is \textit{linear} if it satisfies the following for any $v \in V$, $u \in U$, $a \in \mathbb{R}$:
\begin{itemize}
\item $f(u + v) = f(u) + f(v)$
\item $f(au) = af(u)$
\end{itemize}
In other words, $f$ is linear if it is \say{closed} under addition and scalar multiplication.
\problem{}
It is often convenient to combine the two conditions above into one. \\
Show that $f(au + v) = af(u) + f(v)$ iff $f$ is linear.
\vfill
\problem{}
Is $f(x) = mx + b$ a linear map on $\mathbb{R}$?
\vfill
\problem{}
In general, what does a linear map $\mathbb{R} \to \mathbb{R}$ look like?
\vfill
\problem{}
Is the map ${median}(v): \mathbb{R}^3 \to \mathbb{R}$ linear? \\
\hint{$median([3, 5, 4]) = 4$, but you already knew that.}
\vfill
\pagebreak

View File

@ -0,0 +1,34 @@
\section{Matrices}
\theorem{}<thebigtheorem>
Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\
Conversely, every $n \times m$ matrix represents a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\
\vspace{2mm}
In other words, \textbf{matrices are linear transformations}. \\
The next two problems provide a proof.
\problem{}<prooffwd>
Let $A$ be an $m \times n$ matrix, and $v$ an $m \times 1$ vector. \\
Show that the map $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
\vfill
\problem{}<proofback>
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
\vfill
\pagebreak
\problem{}
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}(p)$. \\
Find a matrix that corresponds to $D$. \\
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?}
\vfill
\pagebreak

View File

@ -1,209 +0,0 @@
\section{Matrices}
\definition{}
A \textit{matrix} is a two-dimensional array of numbers: \\
$$
A =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
$$
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
\definition{}
We can define the product of a matrix $A$ and a vector $v$:
$$
Av =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
1a + 2b + 3c \\
4a + 5b + 6c
\end{bmatrix}
$$
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
$$
Av =
\begin{bmatrix}
\text{---} a_1 \text{---} \\
\text{---} a_2 \text{---}
\end{bmatrix}
\begin{bmatrix}
| \\
v \\
| \\
\end{bmatrix}
=
\begin{bmatrix}
r_1v \\
r_2v
\end{bmatrix}
$$
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
\problem{}
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
\vfill
\problem{}
Compute the following:
$$
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\begin{bmatrix}
5 \\ 3
\end{bmatrix}
$$
\vfill
\pagebreak
\generic{Remark:}
It is a bit more interesting to think of matrix-vector multiplication in the following way: \\
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
\begin{center}
The problem:
\vspace{2mm}
$$
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\begin{bmatrix}
5 \\ 3
\end{bmatrix}
=
\begin{bmatrix}
11 \\ 27 \\ 43
\end{bmatrix}
$$
\end{center}
\end{minipage}%
\hfill
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
\begin{center}
Top-input, right-output:
\vspace{2mm}
\begin{tikzpicture}[>=stealth,thick,baseline]
\matrix [
matrix of math nodes,
left delimiter={[},
right delimiter={]}
] (A) {
1 & 2 \\
3 & 4 \\
5 & 6 \\
};
\node[
fit=(A-1-1)(A-1-1),
inner xsep=0mm,inner ysep=3mm,
label=above:5
] (L) {};
\draw[->, gray] (L.north) -- ([yshift=0mm]A-1-1.north);
\node[
fit=(A-1-2)(A-1-2),
inner xsep=0mm,inner ysep=3mm,
label=above:3
] (R) {};
\draw[->, gray] (R.north) -- ([yshift=0mm]A-1-2.north);
\node[
fit=(A-1-2)(A-1-2),
inner xsep=8mm,inner ysep=0mm,
label=right:{$5 + 6 = 11$}
](Y) {};
\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y);
\node[
fit=(A-2-2)(A-2-2),
inner xsep=8mm,inner ysep=0mm,
label=right:{$15 + 12 = 27$}
](H) {};
\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H);
\node[
fit=(A-3-2)(A-3-2),
inner xsep=8mm,inner ysep=0mm,
label=right:{$25 + 18 = 43$}
](N) {};
\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N);
\end{tikzpicture}
\end{center}
\end{minipage}%
\vspace{2mm}
This is only a model for intuition, though. \\
Make sure you understand the dot product definition on the previous page.
\vspace{5mm}
\theorem{}<thebigtheorem>
Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\
Conversely, every $n \times m$ matrix represents a liner map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\
\vspace{2mm}
In other words, \textbf{matrices are linear transformations}.
\problem{}<prooffwd>
Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
\hint{What is $A$? What is $v$? What are their sizes?}
\vfill
\problem{}<proofback>
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
\vfill
\vfill
\pagebreak
\problem{}
Show that $\mathbb{P}^n$ is a vector space.
\hint{$\mathbb{P}^n$ is the set of all polynomials of degree $ \leq n$.}
\vfill
\problem{}
Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? \\
\vfill
\problem{}
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}(p)$. \\
Find a matrix that corresponds to $D$. \\
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?}
\vfill
\problem{}
Show that the set of all linear maps $\mathbb{R}^n \to \mathbb{R}^m$ is a vector space.
\vfill
\pagebreak