Rearranged Linear Maps
This commit is contained in:
34
Advanced/Linear Maps/parts/2 matrices.tex
Normal file
34
Advanced/Linear Maps/parts/2 matrices.tex
Normal file
@ -0,0 +1,34 @@
|
||||
\section{Matrices}
|
||||
|
||||
\theorem{}<thebigtheorem>
|
||||
Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\
|
||||
Conversely, every $n \times m$ matrix represents a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In other words, \textbf{matrices are linear transformations}. \\
|
||||
The next two problems provide a proof.
|
||||
|
||||
|
||||
\problem{}<prooffwd>
|
||||
Let $A$ be an $m \times n$ matrix, and $v$ an $m \times 1$ vector. \\
|
||||
Show that the map $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<proofback>
|
||||
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}(p)$. \\
|
||||
Find a matrix that corresponds to $D$. \\
|
||||
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user