Edits
This commit is contained in:
@ -290,8 +290,7 @@ We could draw the above transformation as a combination $X$ and $I$ (identity) g
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
We can even omit the $I$ gate, since we now know that transforms affect the whole state. \par
|
||||
Of course, empty spaces always imply an $I$ gate.
|
||||
We can even omit the $I$ gate, since we now know that transforms affect the whole state: \par
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
\node[qubit] (a) at (0, 0) {$\ket{0}$};
|
||||
|
@ -105,9 +105,8 @@ Find the matrix that applies the cnot gate.
|
||||
\vfill
|
||||
|
||||
\generic{Remark:}
|
||||
Note that a quantum gate is fully defined by the place it maps
|
||||
our basis states $\ket{0}$ and $\ket{1}$ (or,$\ket{00...0}$ through $\ket{11...1}$ for multi-qubit gates).
|
||||
This directly follows from \ref{qgateislinear}.
|
||||
As we just saw, a quantum gate is fully defined by the place it maps our basis states $\ket{0}$ and $\ket{1}$ \par
|
||||
(or, $\ket{00...0}$ through $\ket{11...1}$ for multi-qubit gates). This directly follows from \ref{qgateislinear}.
|
||||
|
||||
|
||||
\pagebreak
|
||||
@ -172,28 +171,18 @@ If we measure the result of \ref{applycnot}, what are the probabilities of getti
|
||||
%\vfill
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
The \textit{Hadamard Gate} $H$, is given by the following matrix: \par
|
||||
The \textit{Hadamard Gate} is given by the following matrix: \par
|
||||
\begin{equation*}
|
||||
H = \frac{1}{\sqrt{2}}\begin{bmatrix}
|
||||
1 & 1 \\
|
||||
1 & -1
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
\note[Note]{Note that we divide by $\sqrt{2}$, since $H$ must be orthonormal}
|
||||
\note{Note that we divide by $\sqrt{2}$, since $H$ must be orthonormal.}
|
||||
|
||||
|
||||
\problem{}
|
||||
What is $HH$? \par
|
||||
Using this result, find $H^{-1}$.
|
||||
|
||||
\begin{solution}
|
||||
$HH = I$, so $H^{-1} = H$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\begin{ORMCbox}{Review: Matrix Multiplication}{black!10!white}{black}
|
||||
\begin{ORMCbox}{Review: Matrix Multiplication}{black!10!white}{black!65!white}
|
||||
Matrix multiplication works as follows:
|
||||
|
||||
\begin{equation*}
|
||||
@ -236,4 +225,25 @@ Using this result, find $H^{-1}$.
|
||||
This is exactly the first column of the matrix product.
|
||||
\end{ORMCbox}
|
||||
|
||||
|
||||
\problem{}
|
||||
What is $HH$? \par
|
||||
Using this result, find $H^{-1}$.
|
||||
|
||||
\begin{solution}
|
||||
$HH = I$, so $H^{-1} = H$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What are $H\ket{0}$ and $H\ket{1}$? \par
|
||||
Are these states superpositions?
|
||||
|
||||
\begin{solution}
|
||||
$H\ket{0} = \frac{1}{\sqrt{2}}\bigl(\ket{0} + \ket{1}\bigr)$ and $H\ket{1} = \frac{1}{\sqrt{2}}\bigl(\ket{0} - \ket{1}\bigr)$ \par
|
||||
Both of these are superpositions.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
Reference in New Issue
Block a user