Renamed folder
Before Width: | Height: | Size: 144 KiB |
Before Width: | Height: | Size: 223 KiB |
Before Width: | Height: | Size: 143 KiB |
Before Width: | Height: | Size: 162 KiB |
Before Width: | Height: | Size: 189 KiB |
Before Width: | Height: | Size: 51 KiB |
Before Width: | Height: | Size: 90 KiB |
Before Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 143 KiB |
Before Width: | Height: | Size: 130 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 238 KiB |
Before Width: | Height: | Size: 218 KiB |
Before Width: | Height: | Size: 268 KiB |
Before Width: | Height: | Size: 72 KiB |
Before Width: | Height: | Size: 125 KiB |
Before Width: | Height: | Size: 162 KiB |
Before Width: | Height: | Size: 146 KiB |
Before Width: | Height: | Size: 102 KiB |
Before Width: | Height: | Size: 71 KiB |
Before Width: | Height: | Size: 98 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 202 KiB |
Before Width: | Height: | Size: 215 KiB |
Before Width: | Height: | Size: 67 KiB |
Before Width: | Height: | Size: 135 KiB |
Before Width: | Height: | Size: 78 KiB |
Before Width: | Height: | Size: 95 KiB |
Before Width: | Height: | Size: 143 KiB |
Before Width: | Height: | Size: 90 KiB |
Before Width: | Height: | Size: 83 KiB |
Before Width: | Height: | Size: 79 KiB |
Before Width: | Height: | Size: 95 KiB |
Before Width: | Height: | Size: 94 KiB |
Before Width: | Height: | Size: 102 KiB |
Before Width: | Height: | Size: 90 KiB |
Before Width: | Height: | Size: 90 KiB |
Before Width: | Height: | Size: 82 KiB |
Before Width: | Height: | Size: 94 KiB |
Before Width: | Height: | Size: 319 KiB |
Before Width: | Height: | Size: 181 KiB |
Before Width: | Height: | Size: 180 KiB |
Before Width: | Height: | Size: 186 KiB |
Before Width: | Height: | Size: 182 KiB |
Before Width: | Height: | Size: 160 KiB |
@ -1,63 +0,0 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
% Set to true to show knot measurements.
|
||||
% Only used in tikzset.tex
|
||||
\newif{\ifDebugKnot}
|
||||
%\DebugKnottrue
|
||||
\DebugKnotfalse
|
||||
\input{tikzset.tex}
|
||||
|
||||
|
||||
% Problems from "Why knot"
|
||||
%
|
||||
% Create largest crossing number with cord
|
||||
% Human knot number: how many humans do you need to make the knot?
|
||||
% Human knot number for trefoil composition?
|
||||
% (looks like a wrap around center string)
|
||||
%
|
||||
% Figure-8 knot: mirror without letting go
|
||||
|
||||
%\usepackage{lua-visual-debug}
|
||||
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
<Advanced 2>
|
||||
<Spring 2023>
|
||||
{Knots and Braids}
|
||||
{
|
||||
Prepared by Mark on \today
|
||||
}
|
||||
|
||||
|
||||
\input{parts/0 intro.tex}
|
||||
\input{parts/1 composition.tex}
|
||||
\input{parts/2 links.tex}
|
||||
\input{parts/3 sticks.tex}
|
||||
\input{parts/4 braids.tex}
|
||||
|
||||
|
||||
% Make sure the knot table is on an odd page
|
||||
% so it may be removed in a double-sided
|
||||
% handout.
|
||||
\checkoddpage
|
||||
\ifoddpage\else
|
||||
\vspace*{\fill}
|
||||
\begin{center}
|
||||
{
|
||||
\Large
|
||||
\textbf{This page isn't empty.}
|
||||
}
|
||||
\end{center}
|
||||
\vspace{\fill}
|
||||
\pagebreak
|
||||
\fi
|
||||
|
||||
\input{parts/table}
|
||||
|
||||
\end{document}
|
@ -1,159 +0,0 @@
|
||||
\section{Introduction}
|
||||
|
||||
\definition{}
|
||||
To form a \textit{knot}, take a string, tie a knot, then join the ends. \par
|
||||
You can also think of a knot as a path in three-dimensional space that doesn't intersect itself:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
\begin{knot}
|
||||
\strand
|
||||
(1,2) .. controls +(-45:1) and +(1,0) ..
|
||||
(0, 0) .. controls +(-1,0) and +(-90 -45:1) ..
|
||||
(-1,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
|
||||
% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that.
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(1,2) .. controls +(-45:1) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) ..
|
||||
(-1,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
|
||||
If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par
|
||||
If two knots are isomorphic, they are essentially the same knot.
|
||||
|
||||
\definition{}
|
||||
The simplest knot is the \textit{unknot}. It is show below on the left. \par
|
||||
The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p)]
|
||||
|
||||
\draw[circle] (0,0) circle (1);
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Below are the only four knots with one crossing. \par
|
||||
Show that every nontrivial knot more than two crossings. \par
|
||||
\hint{There are four knots with two crossings. What are they?}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
Draw them all. Each is isomorphic to the unknot.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that this is the unknot. \par
|
||||
A wire or an extension cord may help.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.35\linewidth]{images/big unknot.png}
|
||||
\end{center}
|
||||
|
||||
|
||||
\definition{}
|
||||
As we said before, there are many ways to draw the same knot. \par
|
||||
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight knot}.
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/figure eight many.png}
|
||||
\end{center}
|
||||
\vspace{2mm}
|
||||
|
||||
\problem{}
|
||||
Convince yourself that these are equivalent. \par
|
||||
Try to deform them into each other with a cord!
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,135 +0,0 @@
|
||||
\section{Knot Composition}
|
||||
|
||||
Say we have two knots $A$ and $B$.
|
||||
The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends:
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.15\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/figure eight.png}
|
||||
$A$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.13\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/trefoil.png}
|
||||
$B$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/composition a.png}
|
||||
$A \boxplus B$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
We must be careful to avoid new crossings when composing knots:
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.45\linewidth]{images/composition b.png}
|
||||
\end{center}
|
||||
\vspace{2mm}
|
||||
|
||||
We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par
|
||||
We say a knot is \textit{prime} otherwise.
|
||||
|
||||
\problem{}
|
||||
For any knot $K$, what is $K \boxplus \text{unknot}$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Use a pencil or a cord to compose the figure-eight knot with itself.
|
||||
|
||||
\vfill
|
||||
|
||||
\vfill
|
||||
\pagebreak{}
|
||||
|
||||
\problem{}
|
||||
The following knots are composite. \par
|
||||
What are their prime components? \par
|
||||
Try to make them with a cord. \par
|
||||
\hint{Use the table at the back of this handout to decompose the second knot.}
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\includegraphics[height=30mm]{images/decompose a.png}
|
||||
\hfill
|
||||
\includegraphics[height=30mm]{images/decompose b.png}
|
||||
\hfill~\par
|
||||
\vspace{4mm}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
The first is easy, it's the trefoil composed with itself. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The second is knot $5_2$ composed with itself. \par
|
||||
Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par
|
||||
The figure-eight knot is NOT a part of this composition. Look closely at its crossings.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
When we compose two knots, we may get different results. To fully understand this fact, we need to define knot \textit{orientation}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
An \textit{oriented knot} is created by defining a \say{direction of travel.} \par
|
||||
There are two distinct ways to compose a pair of oriented knots:
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.25\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/orientation b.png}
|
||||
Matching orientation
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.25\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/orientation c.png}
|
||||
Inverse orientation
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
In this example, both compositions happen to give the same result. This is because the trefoil knot is \textit{invertible}: its direction can be reversed by deforming it. This is not true in general, as you will soon see.
|
||||
|
||||
\problem{}
|
||||
Invert a directed trefoil.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
The smallest non-invertible knot is $8_{17}$, shown below. \par
|
||||
Compose $8_{17}$ with itself to obtain two different knots.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[height=30mm]{knot table/8_17.png} \par
|
||||
\vspace{2mm}
|
||||
{\large Knot $8_{17}$}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/noninvertible.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,77 +0,0 @@
|
||||
\section{Links}
|
||||
|
||||
\definition{}
|
||||
A \textit{link} is a set of knots intertwined with each other. \par
|
||||
Just as with knots, we say that two links are \textit{isomorphic} if one can be deformed into the other.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The \textit{Whitehead link} is one of the simplest links we can produce. \par
|
||||
It consists of two knots, so we say it is a \textit{link of two components}.
|
||||
Two projections of the Whitehead link are shown below.
|
||||
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.27\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/whitehead a.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.25\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/whitehead b.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
|
||||
\definition{}
|
||||
The \textit{$n$-unlink} is the link that consists of $n$ disjoint unknots. \par
|
||||
The 3-unlink is shown below:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
|
||||
\draw[circle] (0,0) circle (0.7);
|
||||
\draw[circle] (2,0) circle (0.7);
|
||||
\draw[circle] (4,0) circle (0.7);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\definition{}
|
||||
We say a nontrivial link is \textit{Brunnian} if we get an $n$-unlink after removing any component.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The \textit{Borromean Rings} are a common example of this. If we were to cut any of the three rings, the other two would fall apart.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[height=3cm]{images/borromean.png}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Find a Brunnian link with four components.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a Brunnian link with $n$ components.
|
||||
|
||||
\begin{solution}
|
||||
One of many possible solutions:
|
||||
\begin{center}
|
||||
\includegraphics[width=40mm]{images/brunnian.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,62 +0,0 @@
|
||||
\section{Knots and Sticks}
|
||||
|
||||
\definition{}
|
||||
The \textit{stick number} of a knot is the smallest number of \say{sticks} you must glue together to make the knot. An example of this is below.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=30mm]{images/sticks.png}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Make a trefoil knot with sticks. \par
|
||||
How many do you need?
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\includegraphics[width=20mm]{images/stick trefoil.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
How many sticks do you need to make a figure-eight knot?
|
||||
|
||||
\begin{solution}
|
||||
The figure-eight knot has stick number 7. \par
|
||||
In fact, it is the only knot with stick number 7.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Make the knot $5_1$ (refer to the knot table) with eight sticks.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the only nontrivial knot you can make with six sticks is the trefoil.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $S(k)$ be the stick number of a knot $k$. \par
|
||||
Show that $S(j \boxplus k) \leq s(j) + s(k) - 1$
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is the stick number of $(\text{trefoil} \boxplus \text{trefoil})$?
|
||||
|
||||
\begin{solution}
|
||||
You can make $(\text{trefoil} \boxplus \text{trefoil})$ with 8 sticks.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[angle=90, width=40mm]{images/stick trefoil composition.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,204 +0,0 @@
|
||||
\section{Braids}
|
||||
|
||||
\definition{}
|
||||
A \textit{braid} is a set of $n$ strings with fixed ends. Two braids are equivalent if they may be deformed into each other without disconnecting the strings. Two braids are shown below:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[rotate=90, name prefix=braid] {
|
||||
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||
};
|
||||
|
||||
\braidbars{4}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}
|
||||
\pic[rotate=90, name prefix=braid] {
|
||||
braid = {s_2^{-1} s_3 s_2 s_1 s_1^{-1} s_2^{-1} s_3^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||
};
|
||||
\braidbars{4}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Convince yourself that the braids above are equivalent.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
A braid can be \textit{closed} by conecting its ends:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[rotate=90, name prefix=braid] {
|
||||
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
||||
};
|
||||
|
||||
\closebraid{4}
|
||||
\widebraidbars{4}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
When will a closed braid form a knot? \par
|
||||
When will a closed braid form a link?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw a braid that creates a $3$-unlink when closed.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}<braidify>
|
||||
Draw the following knots as closed braids.
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.13\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/trefoil.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.15\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/closed braid a.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.15\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/closed braid b.png}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
We can describe the projection of a braid by listing which strings cross over and under each other as we move along the braid. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, consider a three-string braid. If the first string crosses over the second, we'll call that a $1$ crossing. If first string crosses \textbf{under} the second, we'll call that a $-1$ crossing.
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_1}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{1} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_1^{-1}}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{-1} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_2}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{2} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.2\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
braid = {s_2^{-1}}
|
||||
};
|
||||
\end{tikzpicture} \par
|
||||
\texttt{-2} crossing
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Verify that the following is a $[1, 2, 1, -2, 1, 2]$ braid. \par
|
||||
Read the braid left to right, with the bottom string numbered $1$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
rotate = 90,
|
||||
name prefix = braid,
|
||||
braid/number of strands = 3
|
||||
] {
|
||||
% When we rotate a braid
|
||||
braid = {s_1 s_2 s_1 s_2^{-1} s_1 s_2}
|
||||
};
|
||||
\labelbraidstart{3}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw the five-string braid defined by $[1, 3, 4, -3, 2, 4]$
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\pic[
|
||||
rotate = 90,
|
||||
name prefix = braid,
|
||||
braid/number of strands = 5
|
||||
] {
|
||||
braid = {s_1 s_3 s_4 s_3^{-1} s_2 s_4}
|
||||
};
|
||||
|
||||
\labelbraidstart{5}
|
||||
\labelbraidend{5}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Identify the knot generated by the 4-string braid $[(-1, 2, 3)^2,~(3)^3]$ \par
|
||||
\hint{$[(1, 2)^2, 3] = [1, 2, 1, 2, 3]$}
|
||||
\hint{This knot has 6 crossings. Use the knot table.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the $n$-string braid $[(1, 2, ..., n-1)^m]$ forms a knot iff $m$ and $n$ are coprime.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,42 +0,0 @@
|
||||
\section{Table of Prime Knots}
|
||||
A knot's \textit{crossing number} is the minimal number of crossings its projection must contain. \par
|
||||
Finding a knot's crossing number is a fairly difficult problem.
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
This table contains the a 20 smallest prime knots, ordered by crossing number. \par
|
||||
Mirror images are not included, even if the mirror image produces a nonisomorphic knot.
|
||||
|
||||
\vfill
|
||||
|
||||
% Images are from the appendix of the Knot book.
|
||||
{
|
||||
\def\w{24mm}
|
||||
\newcounter{knotcounter}
|
||||
|
||||
\foreach \a in {%
|
||||
{3_1},{4_1},{5_1},{5_2},%
|
||||
{6_1},{6_2},{6_3},{7_1},%
|
||||
{7_2},{7_3},{7_4},{7_5},%
|
||||
{7_6},{7_7},{8_1},{8_2},%
|
||||
{8_3},{8_4},{8_5},{8_6}%
|
||||
}{
|
||||
\stepcounter{knotcounter}
|
||||
\hfill
|
||||
\begin{minipage}{\w}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{knot table/\a.png} \par
|
||||
\vspace{2mm}
|
||||
{\huge $\a$}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\ifnum\value{knotcounter}=4
|
||||
\hfill~\par
|
||||
\vspace{4mm}
|
||||
\setcounter{knotcounter}{0}
|
||||
\fi
|
||||
}
|
||||
}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,106 +0,0 @@
|
||||
\usetikzlibrary{
|
||||
knots,
|
||||
hobby,
|
||||
braids,
|
||||
decorations.pathreplacing,
|
||||
shapes.geometric,
|
||||
calc
|
||||
}
|
||||
|
||||
\ifDebugKnot
|
||||
\tikzset{
|
||||
knot diagram/draft mode = crossings,
|
||||
knot diagram/only when rendering/.style = {
|
||||
show curve endpoints,
|
||||
%show curve controls
|
||||
}
|
||||
}
|
||||
\fi
|
||||
|
||||
\tikzset{
|
||||
circle/.style = {
|
||||
line width = 0.8mm,
|
||||
},
|
||||
knot diagram/every strand/.append style={
|
||||
line width = 0.8mm,
|
||||
black
|
||||
},
|
||||
show curve controls/.style={
|
||||
postaction=decorate,
|
||||
decoration={
|
||||
show path construction,
|
||||
curveto code={
|
||||
\draw[blue, dashed]
|
||||
(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta)
|
||||
node [at end, draw, solid, red, inner sep=2pt]{}
|
||||
;
|
||||
|
||||
\draw[blue, dashed]
|
||||
(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast)
|
||||
node [at start, draw, solid, red, inner sep=2pt]{}
|
||||
node [at end, fill, red, ellipse, inner sep=2pt]{}
|
||||
;
|
||||
}
|
||||
}
|
||||
},
|
||||
show curve endpoints/.style={
|
||||
postaction=decorate,
|
||||
decoration={
|
||||
show path construction,
|
||||
curveto code={
|
||||
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
|
||||
}
|
||||
}
|
||||
},
|
||||
braid/gap = 0.2,
|
||||
braid/width = 5mm,
|
||||
braid/height = -8mm,
|
||||
braid/control factor = 0.75,
|
||||
braid/nudge factor = 0.05,
|
||||
braid/every strand/.style = {
|
||||
line width = 0.7mm
|
||||
},
|
||||
bar/.style = {
|
||||
% Should match braid line width
|
||||
line width = 0.7mm,
|
||||
fill = black
|
||||
}
|
||||
}
|
||||
|
||||
% Braid bar macro
|
||||
% Argument: number of strands
|
||||
\newcommand{\braidbars}[1]{
|
||||
\draw[bar] ([xshift=-0.7mm]braid-1-s) rectangle (braid-#1-s);
|
||||
\draw[bar] ([xshift=-0.7mm]braid-rev-1-e) rectangle (braid-rev-#1-e);
|
||||
}
|
||||
\newcommand{\widebraidbars}[1]{
|
||||
\draw[bar] ([xshift=-0.7mm,yshift=-2mm]braid-1-s) rectangle ([yshift=2mm]braid-#1-s);
|
||||
\draw[bar] ([xshift=-0.7mm,yshift=-2mm]braid-rev-1-e) rectangle ([yshift=2mm]braid-rev-#1-e);
|
||||
}
|
||||
|
||||
% Closed braid loops
|
||||
% Argument: number of strands
|
||||
\newcommand{\closebraid}[1]{
|
||||
\foreach \x in {1, ..., #1} {
|
||||
\draw[braid/every strand, rounded corners = 4mm]
|
||||
(braid-\x-s) --
|
||||
([shift=(west:5*\x mm)]braid-\x-s) --
|
||||
([shift=(west:5*\x mm),shift=(south:10*\x mm)]braid-\x-s) --
|
||||
([shift=(east:5*\x mm),shift=(south:10*\x mm)]braid-rev-\x-e) --
|
||||
([shift=(east:5*\x mm)]braid-rev-\x-e) --
|
||||
(braid-rev-\x-e)
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
\newcommand{\labelbraidstart}[1]{
|
||||
\foreach \x in {1, ..., #1} {
|
||||
\node at ([xshift=-2mm]braid-\x-s) {$\x$};
|
||||
}
|
||||
}
|
||||
|
||||
\newcommand{\labelbraidend}[1]{
|
||||
\foreach \x in {1, ..., #1} {
|
||||
\node at ([xshift=2mm]braid-\x-e) {$\x$};
|
||||
}
|
||||
}
|