Added content
This commit is contained in:
parent
9c3b88827f
commit
4e33edf6e7
@ -9,7 +9,16 @@
|
||||
%\usepackage{lua-visual-debug}
|
||||
|
||||
\usepackage{tikz-3dplot}
|
||||
\usetikzlibrary{quotes,angles}
|
||||
\usetikzlibrary{
|
||||
quotes,
|
||||
angles,
|
||||
matrix,
|
||||
decorations.pathreplacing,
|
||||
calc,
|
||||
positioning,
|
||||
fit
|
||||
}
|
||||
\input{tikzset}
|
||||
|
||||
\begin{document}
|
||||
|
||||
@ -24,97 +33,10 @@
|
||||
|
||||
\input{parts/0 notation}
|
||||
\input{parts/1 vectors}
|
||||
|
||||
\section{Dot Products}
|
||||
|
||||
\definition{}
|
||||
We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
|
||||
The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
|
||||
|
||||
\footnotetext{
|
||||
\textbf{Bonus content. Feel free to skip.}
|
||||
|
||||
Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
|
||||
}
|
||||
|
||||
$$
|
||||
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
|
||||
$$
|
||||
|
||||
\problem{}
|
||||
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the dot product is
|
||||
\begin{itemize}
|
||||
\item Commutative
|
||||
\item Distributive
|
||||
\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
|
||||
\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
|
||||
\end{itemize}
|
||||
\input{parts/2 dotprod}
|
||||
\input{parts/3 matrices}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
|
||||
\hint{What is $c$ in terms of $a$ and $b$?}
|
||||
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
|
||||
\hint{The length of $a$ is $||a||$}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
|
||||
\draw[->]
|
||||
(0,0) coordinate (o) -- node[above left] {$a$}
|
||||
(1,2) coordinate (a)
|
||||
;
|
||||
|
||||
\draw[->]
|
||||
(o) -- node[below] {$b$}
|
||||
(3,0.5) coordinate (b)
|
||||
;
|
||||
|
||||
\draw[
|
||||
draw = gray,
|
||||
text = gray,
|
||||
-
|
||||
] (a) -- node[above] {$c$} (b);
|
||||
|
||||
\draw
|
||||
pic[
|
||||
"$\alpha$",
|
||||
draw = orange,
|
||||
text = orange,
|
||||
<->,
|
||||
angle eccentricity = 1.2,
|
||||
angle radius = 1cm
|
||||
]
|
||||
{ angle = b--o--a }
|
||||
;
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\section{Bonus}
|
||||
|
||||
|
90
Advanced/Linear Algebra 101/parts/2 dotprod.tex
Normal file
90
Advanced/Linear Algebra 101/parts/2 dotprod.tex
Normal file
@ -0,0 +1,90 @@
|
||||
\section{Dot Products}
|
||||
|
||||
\definition{}
|
||||
We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
|
||||
The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
|
||||
|
||||
\footnotetext{
|
||||
\textbf{Bonus content. Feel free to skip.}
|
||||
|
||||
Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
|
||||
}
|
||||
|
||||
$$
|
||||
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
|
||||
$$
|
||||
|
||||
\problem{}
|
||||
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the dot product is
|
||||
\begin{itemize}
|
||||
\item Commutative
|
||||
\item Distributive
|
||||
\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
|
||||
\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
|
||||
\hint{What is $c$ in terms of $a$ and $b$?}
|
||||
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
|
||||
\hint{The length of $a$ is $||a||$}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
|
||||
\draw[->]
|
||||
(0,0) coordinate (o) -- node[above left] {$a$}
|
||||
(1,2) coordinate (a)
|
||||
;
|
||||
|
||||
\draw[->]
|
||||
(o) -- node[below] {$b$}
|
||||
(3,0.5) coordinate (b)
|
||||
;
|
||||
|
||||
\draw[
|
||||
draw = gray,
|
||||
text = gray,
|
||||
-
|
||||
] (a) -- node[above] {$c$} (b);
|
||||
|
||||
\draw
|
||||
pic[
|
||||
"$\alpha$",
|
||||
draw = orange,
|
||||
text = orange,
|
||||
<->,
|
||||
angle eccentricity = 1.2,
|
||||
angle radius = 1cm
|
||||
]
|
||||
{ angle = b--o--a }
|
||||
;
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
219
Advanced/Linear Algebra 101/parts/3 matrices.tex
Normal file
219
Advanced/Linear Algebra 101/parts/3 matrices.tex
Normal file
@ -0,0 +1,219 @@
|
||||
\section{Matrices}
|
||||
|
||||
\definition{}
|
||||
A \textit{matrix} is a two-dimensional array of numbers: \\
|
||||
$$
|
||||
A =
|
||||
\begin{bmatrix}
|
||||
1 & 2 & 3 \\
|
||||
4 & 5 & 6
|
||||
\end{bmatrix}
|
||||
$$
|
||||
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
||||
|
||||
\definition{}<matvec>
|
||||
We can define the product of a matrix $A$ and a vector $v$:
|
||||
|
||||
$$
|
||||
Av =
|
||||
\begin{bmatrix}
|
||||
1 & 2 & 3 \\
|
||||
4 & 5 & 6
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
a \\ b \\ c
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
1a + 2b + 3c \\
|
||||
4a + 5b + 6c
|
||||
\end{bmatrix}
|
||||
$$
|
||||
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
||||
|
||||
$$
|
||||
Av =
|
||||
\begin{bmatrix}
|
||||
\text{---} a_1 \text{---} \\
|
||||
\text{---} a_2 \text{---}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
| \\
|
||||
v \\
|
||||
| \\
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
r_1v \\
|
||||
r_2v
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
||||
|
||||
|
||||
\problem{}
|
||||
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Compute the following:
|
||||
|
||||
$$
|
||||
\begin{bmatrix}
|
||||
1 & 2 \\
|
||||
3 & 4 \\
|
||||
5 & 6
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
5 \\ 3
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
We also multiply a matrix by a matrix:
|
||||
|
||||
$$
|
||||
AB =
|
||||
\begin{bmatrix}
|
||||
1 & 2 \\
|
||||
3 & 4
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
10 & 20 \\
|
||||
100 & 200
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
210 & 420 \\
|
||||
430 & 860
|
||||
\end{bmatrix}
|
||||
$$
|
||||
Note each element of the resulting matrix is dot product of a row of $A$ and a column of $B$:
|
||||
|
||||
$$
|
||||
AB =
|
||||
\begin{bmatrix}
|
||||
\text{---} a_1 \text{---} \\
|
||||
\text{---} a_2 \text{---}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
| & | \\
|
||||
v_1 & v_2 \\
|
||||
| & | \\
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
r_1v_1 & r_1v_2 \\
|
||||
r_2v_1 & r_2vm_2 \\
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[>=stealth,thick,baseline]
|
||||
|
||||
\begin{scope}[layer = nodes]
|
||||
\matrix[
|
||||
matrix of math nodes,
|
||||
left delimiter={[},
|
||||
right delimiter={]}
|
||||
] (A) at (0, 0){
|
||||
1 & 2 \\
|
||||
3 & 4 \\
|
||||
};
|
||||
|
||||
\matrix[
|
||||
matrix of math nodes,
|
||||
left delimiter={[},
|
||||
right delimiter={]}
|
||||
] (B) at (2, 0) {
|
||||
10 & 20 \\
|
||||
100 & 200 \\
|
||||
};
|
||||
|
||||
\node at (3.25, 0) {$=$};
|
||||
|
||||
\matrix[
|
||||
matrix of math nodes,
|
||||
left delimiter={[},
|
||||
right delimiter={]}
|
||||
] (C) at (4.5, 0) {
|
||||
210 & 420 \\
|
||||
430 & 860 \\
|
||||
};
|
||||
\end{scope}
|
||||
|
||||
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=3mm]A-1-1) rectangle ([xshift=2mm,yshift=-3mm]A-2-1) {};
|
||||
|
||||
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-1-2) {};
|
||||
|
||||
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
|
||||
|
||||
|
||||
\draw[rounded corners] ([xshift=-2mm,yshift=3mm]A-1-2) rectangle ([xshift=2mm,yshift=-3mm]A-2-2) {};
|
||||
|
||||
\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-2-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
|
||||
|
||||
\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\problem{}
|
||||
Compute the following matrix product. \\
|
||||
|
||||
$$
|
||||
\begin{bmatrix}
|
||||
1 & 2 \\
|
||||
3 & 4 \\
|
||||
5 & 6
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
9 & 8 & 7 \\
|
||||
6 & 5 & 4
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Consider the following matrix product. \\
|
||||
Compute it or explain why you can't.
|
||||
|
||||
$$
|
||||
\begin{bmatrix}
|
||||
1 & 2 & 3 \\
|
||||
4 & 5 & 6
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
10 & 20 \\
|
||||
30 & 40
|
||||
\end{bmatrix}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the product $AB$ exist?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Look back to \ref{matvec}. \\
|
||||
Convince yourself that vectors are matrices. \\
|
||||
|
||||
Can you multiply a matrix by a vector, as in $vA$? \\
|
||||
How does the dot prouduct relate to matrix multiplication? (transpose)
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
36
Advanced/Linear Algebra 101/tikzset.tex
Normal file
36
Advanced/Linear Algebra 101/tikzset.tex
Normal file
@ -0,0 +1,36 @@
|
||||
\usetikzlibrary{arrows.meta}
|
||||
\usetikzlibrary{shapes.geometric}
|
||||
\usetikzlibrary{patterns}
|
||||
|
||||
% We put nodes in a separate layer, so we can
|
||||
% slightly overlap with paths for a perfect fit
|
||||
\pgfdeclarelayer{nodes}
|
||||
\pgfdeclarelayer{path}
|
||||
\pgfsetlayers{main,nodes}
|
||||
|
||||
% Layer settings
|
||||
\tikzset{
|
||||
% Layer hack, lets us write
|
||||
% later = * in scopes.
|
||||
layer/.style = {
|
||||
execute at begin scope={\pgfonlayer{#1}},
|
||||
execute at end scope={\endpgfonlayer}
|
||||
},
|
||||
%
|
||||
% Nodes
|
||||
main/.style = {
|
||||
draw,
|
||||
circle,
|
||||
fill = white
|
||||
},
|
||||
%
|
||||
% Paths
|
||||
path/.style = {
|
||||
line width = 4mm,
|
||||
draw = black,
|
||||
% Lengthen paths so they're
|
||||
% completely under nodes.
|
||||
line cap = rect,
|
||||
opacity = 0.3
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user