Added content
This commit is contained in:
		@ -9,7 +9,16 @@
 | 
			
		||||
%\usepackage{lua-visual-debug}
 | 
			
		||||
 | 
			
		||||
\usepackage{tikz-3dplot}
 | 
			
		||||
\usetikzlibrary{quotes,angles}
 | 
			
		||||
\usetikzlibrary{
 | 
			
		||||
	quotes,
 | 
			
		||||
	angles,
 | 
			
		||||
	matrix,
 | 
			
		||||
	decorations.pathreplacing,
 | 
			
		||||
	calc,
 | 
			
		||||
	positioning,
 | 
			
		||||
	fit
 | 
			
		||||
}
 | 
			
		||||
\input{tikzset}
 | 
			
		||||
 | 
			
		||||
\begin{document}
 | 
			
		||||
 | 
			
		||||
@ -24,97 +33,10 @@
 | 
			
		||||
 | 
			
		||||
	\input{parts/0 notation}
 | 
			
		||||
	\input{parts/1 vectors}
 | 
			
		||||
 | 
			
		||||
	\section{Dot Products}
 | 
			
		||||
 | 
			
		||||
	\definition{}
 | 
			
		||||
	We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
 | 
			
		||||
	The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
 | 
			
		||||
 | 
			
		||||
	\footnotetext{
 | 
			
		||||
		\textbf{Bonus content. Feel free to skip.}
 | 
			
		||||
 | 
			
		||||
		Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
 | 
			
		||||
 | 
			
		||||
		\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
		It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	$$
 | 
			
		||||
		a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
 | 
			
		||||
	$$
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	Show that the dot product is
 | 
			
		||||
	\begin{itemize}
 | 
			
		||||
		\item Commutative
 | 
			
		||||
		\item Distributive
 | 
			
		||||
		\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
 | 
			
		||||
		\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
 | 
			
		||||
	\end{itemize}
 | 
			
		||||
	\input{parts/2 dotprod}
 | 
			
		||||
	\input{parts/3 matrices}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
	\pagebreak
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
 | 
			
		||||
	\hint{What is $c$ in terms of $a$ and $b$?}
 | 
			
		||||
	\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
 | 
			
		||||
	\hint{The length of $a$ is $||a||$}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\begin{center}
 | 
			
		||||
	\begin{tikzpicture}[scale=1]
 | 
			
		||||
 | 
			
		||||
		\draw[->]
 | 
			
		||||
			(0,0) coordinate (o) -- node[above left] {$a$}
 | 
			
		||||
			(1,2) coordinate (a)
 | 
			
		||||
		;
 | 
			
		||||
 | 
			
		||||
		\draw[->]
 | 
			
		||||
			(o) -- node[below] {$b$}
 | 
			
		||||
			(3,0.5) coordinate (b)
 | 
			
		||||
		;
 | 
			
		||||
 | 
			
		||||
		\draw[
 | 
			
		||||
			draw = gray,
 | 
			
		||||
			text = gray,
 | 
			
		||||
			-
 | 
			
		||||
		] (a) -- node[above] {$c$} (b);
 | 
			
		||||
 | 
			
		||||
		\draw
 | 
			
		||||
			pic[
 | 
			
		||||
				"$\alpha$",
 | 
			
		||||
				draw = orange,
 | 
			
		||||
				text = orange,
 | 
			
		||||
				<->,
 | 
			
		||||
				angle eccentricity = 1.2,
 | 
			
		||||
				angle radius = 1cm
 | 
			
		||||
			]
 | 
			
		||||
			{ angle = b--o--a }
 | 
			
		||||
		;
 | 
			
		||||
 | 
			
		||||
	\end{tikzpicture}
 | 
			
		||||
	\end{center}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true?
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
	\pagebreak
 | 
			
		||||
 | 
			
		||||
	\section{Bonus}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										90
									
								
								Advanced/Linear Algebra 101/parts/2 dotprod.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										90
									
								
								Advanced/Linear Algebra 101/parts/2 dotprod.tex
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,90 @@
 | 
			
		||||
\section{Dot Products}
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
 | 
			
		||||
The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
 | 
			
		||||
 | 
			
		||||
\footnotetext{
 | 
			
		||||
	\textbf{Bonus content. Feel free to skip.}
 | 
			
		||||
 | 
			
		||||
	Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
 | 
			
		||||
 | 
			
		||||
	\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
	It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
	a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Show that the dot product is
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
	\item Commutative
 | 
			
		||||
	\item Distributive
 | 
			
		||||
	\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
 | 
			
		||||
	\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
 | 
			
		||||
\hint{What is $c$ in terms of $a$ and $b$?}
 | 
			
		||||
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
 | 
			
		||||
\hint{The length of $a$ is $||a||$}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{center}
 | 
			
		||||
\begin{tikzpicture}[scale=1]
 | 
			
		||||
 | 
			
		||||
	\draw[->]
 | 
			
		||||
		(0,0) coordinate (o) -- node[above left] {$a$}
 | 
			
		||||
		(1,2) coordinate (a)
 | 
			
		||||
	;
 | 
			
		||||
 | 
			
		||||
	\draw[->]
 | 
			
		||||
		(o) -- node[below] {$b$}
 | 
			
		||||
		(3,0.5) coordinate (b)
 | 
			
		||||
	;
 | 
			
		||||
 | 
			
		||||
	\draw[
 | 
			
		||||
		draw = gray,
 | 
			
		||||
		text = gray,
 | 
			
		||||
		-
 | 
			
		||||
	] (a) -- node[above] {$c$} (b);
 | 
			
		||||
 | 
			
		||||
	\draw
 | 
			
		||||
		pic[
 | 
			
		||||
			"$\alpha$",
 | 
			
		||||
			draw = orange,
 | 
			
		||||
			text = orange,
 | 
			
		||||
			<->,
 | 
			
		||||
			angle eccentricity = 1.2,
 | 
			
		||||
			angle radius = 1cm
 | 
			
		||||
		]
 | 
			
		||||
		{ angle = b--o--a }
 | 
			
		||||
	;
 | 
			
		||||
 | 
			
		||||
\end{tikzpicture}
 | 
			
		||||
\end{center}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true?
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
							
								
								
									
										219
									
								
								Advanced/Linear Algebra 101/parts/3 matrices.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										219
									
								
								Advanced/Linear Algebra 101/parts/3 matrices.tex
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,219 @@
 | 
			
		||||
\section{Matrices}
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
A \textit{matrix} is a two-dimensional array of numbers: \\
 | 
			
		||||
$$
 | 
			
		||||
A =
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 & 3 \\
 | 
			
		||||
	4 & 5 & 6
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
 | 
			
		||||
 | 
			
		||||
\definition{}<matvec>
 | 
			
		||||
We can define the product of a matrix $A$ and a vector $v$:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
Av =
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 & 3 \\
 | 
			
		||||
	4 & 5 & 6
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	a \\ b \\ c
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
=
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1a + 2b + 3c \\
 | 
			
		||||
	4a + 5b + 6c
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
Av =
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	\text{---} a_1 \text{---} \\
 | 
			
		||||
	\text{---} a_2 \text{---}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	| \\
 | 
			
		||||
	v \\
 | 
			
		||||
	| \\
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
=
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	r_1v \\
 | 
			
		||||
	r_2v
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Compute the following:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 \\
 | 
			
		||||
	3 & 4 \\
 | 
			
		||||
	5 & 6
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	5 \\ 3
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
We also multiply a matrix by a matrix:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
AB =
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 \\
 | 
			
		||||
	3 & 4
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	10 & 20 \\
 | 
			
		||||
	100 & 200
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
=
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	210 & 420 \\
 | 
			
		||||
	430 & 860
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
Note each element of the resulting matrix is dot product of a row of $A$ and a column of $B$:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
AB =
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	\text{---} a_1 \text{---} \\
 | 
			
		||||
	\text{---} a_2 \text{---}
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	|	& | \\
 | 
			
		||||
	v_1	& v_2 \\
 | 
			
		||||
	|	& | \\
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
=
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	r_1v_1 & r_1v_2 \\
 | 
			
		||||
	r_2v_1 & r_2vm_2 \\
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
\begin{center}
 | 
			
		||||
\begin{tikzpicture}[>=stealth,thick,baseline]
 | 
			
		||||
 | 
			
		||||
	\begin{scope}[layer = nodes]
 | 
			
		||||
		\matrix[
 | 
			
		||||
			matrix of math nodes,
 | 
			
		||||
			left delimiter={[},
 | 
			
		||||
			right delimiter={]}
 | 
			
		||||
		] (A) at (0, 0){
 | 
			
		||||
			1 & 2 \\
 | 
			
		||||
			3 & 4 \\
 | 
			
		||||
		};
 | 
			
		||||
 | 
			
		||||
		\matrix[
 | 
			
		||||
			matrix of math nodes,
 | 
			
		||||
			left delimiter={[},
 | 
			
		||||
			right delimiter={]}
 | 
			
		||||
		] (B) at (2, 0) {
 | 
			
		||||
			10 & 20 \\
 | 
			
		||||
			100 & 200 \\
 | 
			
		||||
		};
 | 
			
		||||
 | 
			
		||||
		\node at (3.25, 0) {$=$};
 | 
			
		||||
 | 
			
		||||
		\matrix[
 | 
			
		||||
			matrix of math nodes,
 | 
			
		||||
			left delimiter={[},
 | 
			
		||||
			right delimiter={]}
 | 
			
		||||
		] (C) at (4.5, 0) {
 | 
			
		||||
			210 & 420 \\
 | 
			
		||||
			430 & 860 \\
 | 
			
		||||
		};
 | 
			
		||||
	\end{scope}
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=3mm]A-1-1) rectangle ([xshift=2mm,yshift=-3mm]A-2-1) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-1-2) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners] ([xshift=-2mm,yshift=3mm]A-1-2) rectangle ([xshift=2mm,yshift=-3mm]A-2-2) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-2-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
 | 
			
		||||
\end{tikzpicture}
 | 
			
		||||
\end{center}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Compute the following matrix product. \\
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 \\
 | 
			
		||||
	3 & 4 \\
 | 
			
		||||
	5 & 6
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	9 & 8 & 7 \\
 | 
			
		||||
	6 & 5 & 4
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Consider the following matrix product. \\
 | 
			
		||||
Compute it or explain why you can't.
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 & 3 \\
 | 
			
		||||
	4 & 5 & 6
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	10 & 20 \\
 | 
			
		||||
	30 & 40
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the product $AB$ exist?
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Look back to \ref{matvec}. \\
 | 
			
		||||
Convince yourself that vectors are matrices. \\
 | 
			
		||||
 | 
			
		||||
Can you multiply a matrix by a vector, as in $vA$? \\
 | 
			
		||||
How does the dot prouduct relate to matrix multiplication? (transpose)
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
							
								
								
									
										36
									
								
								Advanced/Linear Algebra 101/tikzset.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								Advanced/Linear Algebra 101/tikzset.tex
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,36 @@
 | 
			
		||||
\usetikzlibrary{arrows.meta}
 | 
			
		||||
\usetikzlibrary{shapes.geometric}
 | 
			
		||||
\usetikzlibrary{patterns}
 | 
			
		||||
 | 
			
		||||
% We put nodes in a separate layer, so we can
 | 
			
		||||
% slightly overlap with paths for a perfect fit
 | 
			
		||||
\pgfdeclarelayer{nodes}
 | 
			
		||||
\pgfdeclarelayer{path}
 | 
			
		||||
\pgfsetlayers{main,nodes}
 | 
			
		||||
 | 
			
		||||
% Layer settings
 | 
			
		||||
\tikzset{
 | 
			
		||||
	% Layer hack, lets us write
 | 
			
		||||
	% later = * in scopes.
 | 
			
		||||
	layer/.style = {
 | 
			
		||||
		execute at begin scope={\pgfonlayer{#1}},
 | 
			
		||||
		execute at end scope={\endpgfonlayer}
 | 
			
		||||
	},
 | 
			
		||||
	%
 | 
			
		||||
	% Nodes
 | 
			
		||||
	main/.style = {
 | 
			
		||||
		draw,
 | 
			
		||||
		circle,
 | 
			
		||||
		fill = white
 | 
			
		||||
	},
 | 
			
		||||
	%
 | 
			
		||||
	% Paths
 | 
			
		||||
	path/.style = {
 | 
			
		||||
		line width = 4mm,
 | 
			
		||||
		draw = black,
 | 
			
		||||
		% Lengthen paths so they're
 | 
			
		||||
		% completely under nodes.
 | 
			
		||||
		line cap = rect,
 | 
			
		||||
		opacity = 0.3
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user