Added content
This commit is contained in:
@ -9,7 +9,16 @@
|
||||
%\usepackage{lua-visual-debug}
|
||||
|
||||
\usepackage{tikz-3dplot}
|
||||
\usetikzlibrary{quotes,angles}
|
||||
\usetikzlibrary{
|
||||
quotes,
|
||||
angles,
|
||||
matrix,
|
||||
decorations.pathreplacing,
|
||||
calc,
|
||||
positioning,
|
||||
fit
|
||||
}
|
||||
\input{tikzset}
|
||||
|
||||
\begin{document}
|
||||
|
||||
@ -24,97 +33,10 @@
|
||||
|
||||
\input{parts/0 notation}
|
||||
\input{parts/1 vectors}
|
||||
|
||||
\section{Dot Products}
|
||||
|
||||
\definition{}
|
||||
We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
|
||||
The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
|
||||
|
||||
\footnotetext{
|
||||
\textbf{Bonus content. Feel free to skip.}
|
||||
|
||||
Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
It's also worth noting that a function $f$ from $X$ to $Y$ can defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
|
||||
}
|
||||
|
||||
$$
|
||||
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
|
||||
$$
|
||||
|
||||
\problem{}
|
||||
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the dot product is
|
||||
\begin{itemize}
|
||||
\item Commutative
|
||||
\item Distributive
|
||||
\item Homogeneic: $x(a \cdot b) = xa \cdot b = a \cdot xb$
|
||||
\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$
|
||||
\end{itemize}
|
||||
\input{parts/2 dotprod}
|
||||
\input{parts/3 matrices}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
|
||||
\hint{What is $c$ in terms of $a$ and $b$?}
|
||||
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
|
||||
\hint{The length of $a$ is $||a||$}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
|
||||
\draw[->]
|
||||
(0,0) coordinate (o) -- node[above left] {$a$}
|
||||
(1,2) coordinate (a)
|
||||
;
|
||||
|
||||
\draw[->]
|
||||
(o) -- node[below] {$b$}
|
||||
(3,0.5) coordinate (b)
|
||||
;
|
||||
|
||||
\draw[
|
||||
draw = gray,
|
||||
text = gray,
|
||||
-
|
||||
] (a) -- node[above] {$c$} (b);
|
||||
|
||||
\draw
|
||||
pic[
|
||||
"$\alpha$",
|
||||
draw = orange,
|
||||
text = orange,
|
||||
<->,
|
||||
angle eccentricity = 1.2,
|
||||
angle radius = 1cm
|
||||
]
|
||||
{ angle = b--o--a }
|
||||
;
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\section{Bonus}
|
||||
|
||||
|
Reference in New Issue
Block a user