Started proofs handout
This commit is contained in:
parent
6e38a4939b
commit
45949321e9
104
Advanced/Intro to Proofs/main.tex
Executable file
104
Advanced/Intro to Proofs/main.tex
Executable file
@ -0,0 +1,104 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{Fall 2023}
|
||||
\title{Intro to Proofs}
|
||||
\subtitle{Prepared by Mark on \today{}}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
||||
We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par
|
||||
Assume that every integer is even or odd, and never both.
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{itemize}[itemsep=4mm]
|
||||
\item
|
||||
Show that the product of two odd integers is odd.
|
||||
|
||||
\item
|
||||
Let $a, b \in \mathbb{Z}, a \neq 0$.
|
||||
We say $a$ \textit{divides} $b$ and write $a~|~b$ if there is a $k \in \mathbb{Z}$ so that $ak = b$.
|
||||
|
||||
Show that $a~|~b \implies a~|~2b$
|
||||
|
||||
\item
|
||||
Show that $5n^2 + 3n + 7$ is odd for any $n \in \mathbb{Z}$.
|
||||
|
||||
\item
|
||||
Let $a, b, c$ be integers so that $a^2 + b^2 = c^2$. \par
|
||||
Show that one of $a, b$ is even.
|
||||
|
||||
\item
|
||||
Show that every odd integer is the difference of two squares.
|
||||
|
||||
\item
|
||||
Prove the assumption in the statement of this problem.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{itemize}[itemsep=4mm]
|
||||
\item Show that $\sqrt{2}$ is irrational.
|
||||
\item Show that the product of two rational numbers must be rational, while the product of
|
||||
irrational numbers may be rational or irrational. If you claim a number is irrational, provide
|
||||
a proof.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $X = \{x \in \mathbb{Z} ~\bigl|~ n \geq 2 \}$. For $k \geq 2$, degine $X_k = \{kx ~\bigl|~ x \in X \}$. \par
|
||||
What is $X - (X_2 \cup X_3 \cup X_4 \cup ...)$? Prove your claim.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
An \textit{undirected graph} $G$ is an ordered pair $(V, E)$, where $V$ is a set, and $E \subset V \times V$
|
||||
satisfies $(a, b) \in E \iff (b, a) \in E$ and $E \cap \text{D}(X) = \varnothing$.
|
||||
|
||||
The elements of $V$ are called \textit{vertices}; the elements of $E$ are called \textit{edges}.
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{itemize}[itemsep=4mm]
|
||||
|
||||
\item Make sense of the conditions on $E$.
|
||||
|
||||
\item The \textit{degree} of a vertex $a$ is the number of edges connected to that vertex. \par
|
||||
We'll denote this as $d(a)$. Write a formal definition of this function using set-builder notation and the definitions above.
|
||||
Recall that $|X|$ denotes the size of a set $X$.
|
||||
|
||||
\item There are 9 people at a party. Show that they cannot each have 3 friends. \par
|
||||
Friendship is always mutual.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user