Minor edits

This commit is contained in:
Mark 2024-02-19 13:54:53 -08:00
parent 89b75de9b0
commit 321238b542
Signed by: Mark
GPG Key ID: C6D63995FE72FD80

View File

@ -462,48 +462,24 @@ Thus,
\end{equation*}
\begin{ORMCbox}{Review: Matrix Multiplication}{black!10!white}{black!65!white}
Matrix multiplication works as follows:
\begin{ORMCbox}{Review: Multiplying Vectors by Matrices}{black!10!white}{black!65!white}
\begin{equation*}
AB =
Av =
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
a_0 & b_0 \\
a_1 & b_1 \\
v_0 \\ v_1
\end{bmatrix}
=
\begin{bmatrix}
1a_0 + 2a_1 & 1b_0 + 2b_1 \\
3a_0 + 4a_1 & 3b_0 + 4b_1 \\
1v_0 + 2v_1 \\
3v_0 + 4v_1
\end{bmatrix}
\end{equation*}
Note that this is very similar to multiplying each column of $B$ by $A$. \par
The product $AB$ is simply $Ac$ for every column $c$ in $B$:
\begin{equation*}
Ac_0 =
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
a_0 \\ a_1
\end{bmatrix}
=
\begin{bmatrix}
1a_0 + 2a_1 \\
3a_0 + 4a_1
\end{bmatrix}
\end{equation*}
This is exactly the first column of the matrix product. \par
Also, note that each element of $Ac_0$ is the dot product of a row in $A$ and a column in $c_0$.
Note that each element of $Av$ is the dot product of a row in $A$ and a column in $v$.
\end{ORMCbox}
\problem{}