Symmetric edits
This commit is contained in:
@ -20,7 +20,7 @@
|
|||||||
= Bonus problems
|
= Bonus problems
|
||||||
|
|
||||||
#problem()
|
#problem()
|
||||||
Show that $x in ZZ^+$ has a multiplicative inverse mod $n$ iff $gcd(x, n) = 1$
|
Show that $x in ZZ^+$ has a multiplicative inverse mod $n$ if and only if $gcd(x, n) = 1$
|
||||||
|
|
||||||
#v(1fr)
|
#v(1fr)
|
||||||
|
|
||||||
|
@ -45,7 +45,7 @@ How many permutations of $n$ objects are there?
|
|||||||
#v(1fr)
|
#v(1fr)
|
||||||
|
|
||||||
#problem()
|
#problem()
|
||||||
What map corresponds to the permutation that produces the array `312` from the array `123`?
|
What map corresponds to the permutation that produces the array `231` from the array `123`?
|
||||||
|
|
||||||
#v(1fr)
|
#v(1fr)
|
||||||
|
|
||||||
|
@ -100,7 +100,7 @@ How about $[321][213][231]$? \
|
|||||||
Rewrite these compositions as one permutation in square brackets.
|
Rewrite these compositions as one permutation in square brackets.
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
- $[1324][4321]$ is $[4321]$
|
- $[1324][4321]$ is $[4231]$
|
||||||
- $[321][213][231]$ is $[123]$
|
- $[321][213][231]$ is $[123]$
|
||||||
])
|
])
|
||||||
|
|
||||||
@ -501,7 +501,7 @@ List all other ways to write this cycle. \
|
|||||||
|
|
||||||
|
|
||||||
#definition("Inverse")
|
#definition("Inverse")
|
||||||
The _inverse_ of a permitation $f$ is a permutation $g$ that "un-does" $f$. \
|
The _inverse_ of a permutation $f$ is a permutation $g$ that "un-does" $f$. \
|
||||||
This means that $g(f(x)) = x$ for all $x$.
|
This means that $g(f(x)) = x$ for all $x$.
|
||||||
|
|
||||||
#problem()
|
#problem()
|
||||||
@ -550,7 +550,7 @@ Show that any cycle $(123...n)$ is equal to the product $(12)(23)...(n-1, n)$.
|
|||||||
Write $(7126453)$ as a product of transpositions. \
|
Write $(7126453)$ as a product of transpositions. \
|
||||||
|
|
||||||
#solution[
|
#solution[
|
||||||
Move elements one at a time, and using the last position as temporary storage.
|
Move elements one at a time, using the last position as temporary storage.
|
||||||
|
|
||||||
We get $(71)(72)(76)(74)(75)(73)$.
|
We get $(71)(72)(76)(74)(75)(73)$.
|
||||||
Other solutions are possible. \
|
Other solutions are possible. \
|
||||||
@ -589,7 +589,7 @@ Show that any permutation is a product of transpositions of the form $(1, k)$. \
|
|||||||
|
|
||||||
|
|
||||||
#problem(label: "oneplustrans")
|
#problem(label: "oneplustrans")
|
||||||
Show that any transposition $(a, b)$ is equal to the product $(a, a+1)(a+1, b)(a, a+1)$.
|
Show that any transposition $(a, b)$ is equal to the product $(a, a+1)(a+1, b)(a, a+1)$ whenever $a + 1 != b$.
|
||||||
|
|
||||||
#solution[
|
#solution[
|
||||||
This is the same as @onetrans,
|
This is the same as @onetrans,
|
||||||
|
@ -2,20 +2,16 @@
|
|||||||
#import "@preview/cetz:0.4.2"
|
#import "@preview/cetz:0.4.2"
|
||||||
#import "../macros.typ": *
|
#import "../macros.typ": *
|
||||||
|
|
||||||
= Groups (review)
|
= Groups
|
||||||
|
|
||||||
#definition()
|
#definition()
|
||||||
Before we continue, we must introduce a bit of notation:
|
Before we continue, we must introduce a bit of notation:
|
||||||
- $S_n$ is the set of permutations on $n$ objects.
|
- $S_n$ is the set of permutations on $n$ objects.
|
||||||
- $ZZ_n$ is the set of integers mod $n$.
|
- $ZZ_n$ is the set of integers mod $n$.
|
||||||
|
|
||||||
- $ZZ_n^times$ is the set of integers mod $n$ with multiplicative inverses. \
|
|
||||||
In other words, it is the set of integers smaller than $n$ and coprime to $n$.#footnote[We proved this in another handout, but you may take it as fact here.] \
|
|
||||||
For example, $ZZ_12^times = {1, 5, 7, 11}$.
|
|
||||||
|
|
||||||
#problem()
|
#problem()
|
||||||
What are the elements of $S_3$? #hint[Use cycle notation] \
|
What are the elements of $S_3$? #hint[Use cycle notation] \
|
||||||
How about $ZZ_17^times$?
|
How about $ZZ_8$?
|
||||||
|
|
||||||
#v(1fr)
|
#v(1fr)
|
||||||
|
|
||||||
@ -47,6 +43,16 @@ What is the group with the fewest number of elements?
|
|||||||
Verifying that the trivial group is a group is trivial.
|
Verifying that the trivial group is a group is trivial.
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
#definition()
|
||||||
|
$ZZ_n^times$ is the set of integers mod $n$ with multiplicative inverses. \
|
||||||
|
We can prove that this is the set of integers smaller than $n$ and coprime to $n$. \
|
||||||
|
For example, $ZZ_12^times = {1, 5, 7, 11}$.
|
||||||
|
|
||||||
|
#problem()
|
||||||
|
What are the elements of $ZZ^times_8$? \
|
||||||
|
How about $ZZ^times_23$? #hint[23 is prime.]
|
||||||
|
|
||||||
#v(1fr)
|
#v(1fr)
|
||||||
#pagebreak()
|
#pagebreak()
|
||||||
|
|
||||||
@ -66,8 +72,11 @@ Show that $S_n$ is a group under composition.
|
|||||||
|
|
||||||
#problem()
|
#problem()
|
||||||
Let $(G, *)$ be a group with finitely many elements, and let $a in G$. \
|
Let $(G, *)$ be a group with finitely many elements, and let $a in G$. \
|
||||||
Show that there is an $n$ in $in ZZ^+$ so that $a^n = e$ \
|
Show that there is an $n$ in $in ZZ$ so that $a^n = e$ \
|
||||||
#hint[$a^n = a * a * ... * a$ repeated $n$ times.]
|
#hint[
|
||||||
|
$a^n = a * a * ... * a$ repeated $n$ times. \
|
||||||
|
$a^(-n) = a^(-1) * a^(-1) * ... * a^(-1)$, where $a^(-1)$ is the inverse of $a$. \
|
||||||
|
]
|
||||||
|
|
||||||
#v(2mm)
|
#v(2mm)
|
||||||
|
|
||||||
@ -111,7 +120,7 @@ Then, find all generators of $(ZZ_5, +)$
|
|||||||
How many groups have only one generator?
|
How many groups have only one generator?
|
||||||
|
|
||||||
#solution[
|
#solution[
|
||||||
Only one: the trivial group. The inverse of a generator is also a generator!
|
Two: the trivial group and $(ZZ_2, +)$.
|
||||||
]
|
]
|
||||||
|
|
||||||
#v(1fr)
|
#v(1fr)
|
||||||
|
Reference in New Issue
Block a user