Rename
This commit is contained in:
58
Advanced/Symmetric Groups/main.tex
Executable file
58
Advanced/Symmetric Groups/main.tex
Executable file
@ -0,0 +1,58 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{\smallurl{}}
|
||||
\title{Symmetric Groups}
|
||||
\subtitle{Prepared by Mark on \today{}}
|
||||
|
||||
|
||||
|
||||
\def\line#1#2{
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(#1)
|
||||
-- ($(#1) + (0, -1)$)
|
||||
-- ($(#2) + (0,1)$)
|
||||
-- (#2);
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/0 intro}
|
||||
\input{parts/1 cycle}
|
||||
\input{parts/2 groups}
|
||||
\input{parts/3 subgroup}
|
||||
|
||||
|
||||
\section{Bonus problems}
|
||||
|
||||
\problem{}
|
||||
Show that $x \in \mathbb{Z}^+$ has a multiplicative inverse mod $n$ iff $\text{gcd}(x, n) = 1$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $\sigma = (\sigma_1 \sigma_2 ... \sigma_k)$ be a $k$-cycle in $S_n$, and let $\tau$ be an arbitrary element of $S_n$. \par
|
||||
Show that $\tau \sigma \tau^{-1}$ = $\bigl(\tau(\sigma_1), \tau(\sigma_2), ..., \tau(\sigma_k)\bigr)$ \par
|
||||
\hint{As usual, $\tau$ is a permutation. Thus, $\tau(x)$ is the value at position $x$ after applying $\tau$.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the set $\Bigl\{ (1, 2),~ (1,2,...,n) \Bigr\}$ generates $S_n$.
|
||||
\vfill
|
||||
|
||||
% TODO: (a second day?)
|
||||
% alternating group
|
||||
% type and sign and conjugation
|
||||
% isomorphisms & automorphisms
|
||||
% automorphism groups
|
||||
\end{document}
|
6
Advanced/Symmetric Groups/meta.toml
Normal file
6
Advanced/Symmetric Groups/meta.toml
Normal file
@ -0,0 +1,6 @@
|
||||
[metadata]
|
||||
title = "Symmetric Groups"
|
||||
|
||||
[publish]
|
||||
handout = true
|
||||
solutions = true
|
199
Advanced/Symmetric Groups/parts/0 intro.tex
Normal file
199
Advanced/Symmetric Groups/parts/0 intro.tex
Normal file
@ -0,0 +1,199 @@
|
||||
\section{Introduction}
|
||||
|
||||
|
||||
\definition{}
|
||||
Informally, a \textit{permutation} of a collection of $n$ objects is an ordering of these $n$ objects. \par
|
||||
For example, a few permutations of $\texttt{A}, \texttt{B}, \texttt{C}, \texttt{D}$ are $\texttt{ABCD}$,
|
||||
$\texttt{BCDA}$, and $\texttt{DACB}$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This, however, isn't the definition we'll use today. Instead of defining permutations as \say{ordered lists,}
|
||||
(as we do above), we'll define them as functions. Our first goal today is to make sense of this definition.
|
||||
|
||||
|
||||
|
||||
\definition{Permutations}
|
||||
Let $\Omega$ be an arbitrary set of $n$ objects. \par
|
||||
A \textit{permutation} on $\Omega$ is a map from $\Omega$ to itself that produces a \textit{unique} output for each input. \par
|
||||
\note{In other words, if $a$ and $b$ are different, $f(a)$ and $f(b)$ must also be different.}
|
||||
|
||||
|
||||
\footnotetext{The words \say{function} and \say{map} are equivalent.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, consider $\{1, 2, 3\}$. \par
|
||||
One permutation on this set can be defined as follows: \par
|
||||
\begin{itemize}
|
||||
\item $f(1) = 3$
|
||||
\item $f(2) = 1$
|
||||
\item $f(3) = 2$
|
||||
\end{itemize}
|
||||
|
||||
If we take the array $123$ and apply
|
||||
|
||||
|
||||
\problem{}
|
||||
List all permutations on three objects. \par
|
||||
How many permutations of $n$ objects are there?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What map corresponds to the permutation $[321]$?
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What map corresponds to the \say{do-nothing} permutation? \par
|
||||
Write it as a function and in square-bracket notation. \par
|
||||
\note[Note]{We usually call this the \textit{trivial permutation}}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
We can visualize permutations with a \textit{string diagram}, shown below. \par
|
||||
The arrows in this diagram denote the image of $f$ for each possible input.
|
||||
Two examples are below:
|
||||
|
||||
\vspace{2mm}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (1b) at (0, -2) {1};
|
||||
\node (3b) at (1, -2) {3};
|
||||
\node (4b) at (2, -2) {4};
|
||||
\node (2b) at (3, -2) {2};
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (2b) at (0, -2) {2};
|
||||
\node (1b) at (1, -2) {1};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill\null
|
||||
\vspace{2mm}
|
||||
|
||||
|
||||
Note that in all our examples thus far, the objects in our set have an implicit order.
|
||||
This is only for convenience. The elements of $\Omega$ are not ordered (it is a \textit{set}, after all),
|
||||
and we may present them however we wish.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
For example, consider the diagrams below. \par
|
||||
On the left, 1234 are ordered as usual. In the middle, they are ordered alphabetically. \par
|
||||
The rightmost diagram uses arbitrary, meaningless labels.
|
||||
|
||||
\vspace{2mm}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (2b) at (0, -2) {2};
|
||||
\node (1b) at (1, -2) {1};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (4a) at (0, 0.5) {4};
|
||||
\node (1a) at (1, 0.5) {1};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (2a) at (3, 0.5) {2};
|
||||
|
||||
\node (1b) at (0, -2) {1};
|
||||
\node (4b) at (1, -2) {4};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (2b) at (3, -2) {2};
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {$\triangle$};
|
||||
\node (2a) at (1, 0.5) {$\divideontimes$};
|
||||
\node (3a) at (2, 0.5) {$\circledcirc$};
|
||||
\node (4a) at (3, 0.5) {$\boxdot$};
|
||||
|
||||
\node (2b) at (0, -2) {$\divideontimes$};
|
||||
\node (1b) at (1, -2) {$\triangle$};
|
||||
\node (3b) at (2, -2) {$\circledcirc$};
|
||||
\node (4b) at (3, -2) {$\boxdot$};
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill\null
|
||||
\vspace{2mm}
|
||||
|
||||
|
||||
It shouldn't be hard to see that despite the different \say{output} order (2134 and 1432), \par
|
||||
the same permutation is depicted in all three diagrams. This example demonstrates two things:
|
||||
\begin{itemize}[itemsep=2mm]
|
||||
\item First, the names of the items in our set do not have any meaning. \par
|
||||
$\Omega$ is just a set of $n$ arbitrary things, which we may label however we like.
|
||||
|
||||
\item Second, permutations are verbs. We do not care about the \say{output} of a certain permutation,
|
||||
we care about what it \textit{does}. We could, for example, describe the permutation above as
|
||||
\say{swap the first two of four elements.}
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
|
||||
Why, then, do we order our elements when we talk about permutations? As noted before, this is for convenience.
|
||||
If we assign a natural order to the elements of $\Omega$ (say, 1234), we can identify permutations by simply listing
|
||||
their output:
|
||||
Clearly, $[1234]$ represents the trivial permutation, $[2134]$ represents \say{swap first two,}
|
||||
and $[4123]$ represents \say{cycle right.}
|
||||
|
||||
\problem{}
|
||||
Draw string diagrams for $[4123]$ and $[2341]$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
536
Advanced/Symmetric Groups/parts/1 cycle.tex
Executable file
536
Advanced/Symmetric Groups/parts/1 cycle.tex
Executable file
@ -0,0 +1,536 @@
|
||||
|
||||
\section{Cycle Notation}
|
||||
|
||||
\definition{Order}
|
||||
The \textit{order} of a permutation $f$ is the \textbf{smallest} positive $n$ so that $f^n(x) = x$ for all $x$. \par
|
||||
If we repeatedly apply a permutation with order $n$, we will get back to where we started after $n$ steps. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, consider $[2134]$. This permutation has order $2$, as we clearly see below:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (2b) at (0, -2) {2};
|
||||
\node (1b) at (1, -2) {1};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\node (1c) at (0, -4.5) {1};
|
||||
\node (2c) at (1, -4.5) {2};
|
||||
\node (3c) at (2, -4.5) {3};
|
||||
\node (4c) at (3, -4.5) {4};
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\line{1b}{1c}
|
||||
\line{2b}{2c}
|
||||
\line{3b}{3c}
|
||||
\line{4b}{4c}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Swapping the first two elements of a list twice changes nothing. \par
|
||||
Thus, $[2134]$ has an order of two.
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the order of $[2314]$? \par
|
||||
How about $[4321]$? \par
|
||||
\note[Note]{You shouldn't need to draw any strings to solve this problem.}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that all permutations (on a finite set) have a well-defined order. \par
|
||||
In other words, show that there is always an integer $n$ so that $f^n(x) = x$.
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{Composition}<compdef>
|
||||
The \textit{composition} of two permutations $f$ and $g$ is the permutation $h(x) = f(g(x))$. \par
|
||||
We'll denote this as $fg$---that is, by simply writing the permutations we're composing next to each other.
|
||||
|
||||
\problem{}
|
||||
Show that function composition is associative. \par
|
||||
That is, show that $f(gh) = (fg)h$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is $[1324][4321]$? \par
|
||||
How about $[321][213][231]$? \par
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
As you may have noticed, the square-bracket notation we've been using thus far is a bit unwieldy.
|
||||
Permutations are verbs---but we've been referring to them using a noun (namely, their output when
|
||||
applied to an ordered sequence of numbers). Our notation fails to capture the meaning of the
|
||||
underlying object.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Think about it: is the permutation $[1234]$ different than the permutation $[12345]$? \par
|
||||
Indeed, these permutations operate on different sets---but they are both the identity! \par
|
||||
What should we do if we want to talk about the identity on $\{1, 2, ..., 10\}$?
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We need something better.
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{Cycles}
|
||||
Any permutation is composed of a number of \textit{cycles}. \par
|
||||
|
||||
For example, consider the permutation $[2134]$, which consists of one two-cycle: $1 \to 2 \to 1$ \par
|
||||
\note[Note]{$3 \to 3$ and $4 \to 4$ are also cycles, but we'll ignore them. One-cycles aren't aren't interesting.}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0, 1)$)
|
||||
-- ($(1) + (0, 1)$)
|
||||
-- (1);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
The permutation $[431265]$ is a bit more interesting---it contains two cycles: \par
|
||||
($1 \to 3 \to 2 \to 4 \to 1$ and $5 \to 6 \to 5$)
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
\node (6) at (5, 0) {6};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(3)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0,1.5)$)
|
||||
-- ($(4) + (0,1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(4)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- ($(1) + (0,-1.5)$)
|
||||
-- (1);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,1)$)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(5)
|
||||
-- ($(5) + (0,-1)$)
|
||||
-- ($(6) + (0,-1)$)
|
||||
-- (6);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(6)
|
||||
-- ($(6) + (0,1)$)
|
||||
-- ($(5) + (0,1)$)
|
||||
-- (5);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
Another name we'll often use for two-cycles is \textit{transposition}. \par
|
||||
Any permutation that swaps two adjacent elements is called a transposition. \par
|
||||
|
||||
|
||||
\problem{}
|
||||
Find all cycles in $[5342761]$.
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
\node (6) at (5, 0) {6};
|
||||
\node (7) at (6, 0) {7};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,2)$)
|
||||
-- ($(7) + (0,2)$)
|
||||
-- (7);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(7)
|
||||
-- ($(7) + (0,-1.5)$)
|
||||
-- ($(5) + (0,-1.5)$)
|
||||
-- (5);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(5)
|
||||
-- ($(5) + (0,1.5)$)
|
||||
-- ($(1) + (0.5,1.5)$)
|
||||
-- ($(1) + (0.5,-1)$)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- (1);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(2)
|
||||
-- ($(2) + (0,-1.5)$)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(4)
|
||||
-- ($(4) + (0,1)$)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(3)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- ($(2) + (0.5,-1)$)
|
||||
-- ($(2) + (0.5,1)$)
|
||||
-- ($(2) + (0,1)$)
|
||||
-- (2);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What permutation (on five objects) is formed by the cycles $3 \to 5 \to 3$ and $1 \to 2 \to 4 \to 1$?
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(3)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- ($(5) + (0,1)$)
|
||||
-- (5);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(5)
|
||||
-- ($(5) + (0,-1)$)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(1)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(2)
|
||||
-- ($(2) + (0,1.5)$)
|
||||
-- ($(4) + (0,1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(4)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- ($(1) + (0.5,-1.5)$)
|
||||
-- ($(1) + (0.5,1)$)
|
||||
-- ($(1) + (0,1)$)
|
||||
-- (1);
|
||||
\end{tikzpicture}
|
||||
|
||||
This is $[41523]$
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{Cycle Notation}
|
||||
We now have a solution to our problem of notation.
|
||||
Instead of referring to permutations using their output, we will refer to them using their \textit{cycles}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, we'll write $[2134]$ as $(12)$, which denotes the cycle $1 \to 2 \to 1$:
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0, 1)$)
|
||||
-- ($(1) + (0, 1)$)
|
||||
-- (1);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
As another example, $[431265]$ is $(1324)(56)$ in cycle notation. \par
|
||||
Note that we write $[431265]$ as a \textit{composition} of two cycles: \par
|
||||
applying the permutation $[431265]$ is the same as applying $(1324)$, then applying $(56)$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
\node (6) at (5, 0) {6};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(3)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0,1.5)$)
|
||||
-- ($(4) + (0,1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(4)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- ($(1) + (0,-1.5)$)
|
||||
-- (1);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,1)$)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(5)
|
||||
-- ($(5) + (0,-1)$)
|
||||
-- ($(6) + (0,-1)$)
|
||||
-- (6);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(6)
|
||||
-- ($(6) + (0,1)$)
|
||||
-- ($(5) + (0,1)$)
|
||||
-- (5);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Any permutation $\sigma$ may be written as a product (i.e, composition) of disjoint cycles $\sigma_1\sigma_2...\sigma_k$. \par
|
||||
Make sure you believe this fact. If you don't, ask an instructor. \par
|
||||
Also, the identity $f(x) = x$ is written as $()$ in cycle notation.
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Convince yourself that disjoint cycles commute. \par
|
||||
That is, that $(1324)(56) = (56)(1324) = [431265]$ since $(1324)$ and $(56)$ do not overlap. \par
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<insquare>
|
||||
Write the following in square-bracket notation.
|
||||
\begin{itemize}
|
||||
\item $(12)$ \tab~\tab on a set of 2 elements
|
||||
\item $(12)(435)$ \tab on a set of 5 elements
|
||||
\vspace{2mm}
|
||||
\item $(321)$ \tab~\tab on a set of 3 elements
|
||||
\item $(321)$ \tab~\tab on a set of 6 elements
|
||||
\vspace{2mm}
|
||||
\item $(1234)$ \tab on a set of 4 elements
|
||||
\item $(3412)$ \tab on a set of 4 elements
|
||||
\end{itemize}
|
||||
\note{
|
||||
Note that $(12)$ refers the \say{swap first two} permutation on a set of \textit{any} size. \\
|
||||
We can now use the same name for the same permutation on two different sets! \\
|
||||
}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Write the following in square-bracket notation.
|
||||
Be careful.
|
||||
\begin{itemize}
|
||||
\item $(13)(243)$ \tab on a set of 4 elements
|
||||
\item $(243)(13)$ \tab on a set of 4 elements
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Look at the last two permutations in \ref{insquare}, $(1234)$ and $(3412)$. \par
|
||||
These are \textit{identical}---they are the same cycle written in two different ways. \par
|
||||
List all other ways to write this cycle. \hint{There are two more.} \par
|
||||
\note{Also, note that the last two permutations in \ref{insquare} are the same.}
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the inverse of $(12)$? \par
|
||||
How about $(123)$? And $(4231)$? \par
|
||||
\note{
|
||||
Note that again, we don't need to know how big our set is. \\
|
||||
The inverse of $(12)$ is the same in all sets.
|
||||
}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Say $\sigma$ is a permutation composed of disjoint cycles $\sigma_1\sigma_2...\sigma_k$. \par
|
||||
Say we know the order of all $\sigma_i$. What is the order of $\sigma$?
|
||||
|
||||
\begin{solution}
|
||||
$\text{lcm}\Bigl(\text{ord}(\sigma_1),~ \text{ord}(\sigma_2),~ ..., ~ \text{ord}(\sigma_k)\Bigr)$
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<cycletrans>
|
||||
Show that any cycle $(123...n)$ is equal to the product $(12)(23)...(n-1, n)$.
|
||||
|
||||
\begin{solution}
|
||||
TODO
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Write $(7126453)$ as a product of transpositions. \par
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}<simpletrans>
|
||||
Show that any permutation is a product of transpositions.
|
||||
|
||||
\begin{solution}
|
||||
Use \ref{cycletrans}.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that any permutation is a product of transpositions of the form $(1, k)$. \par
|
||||
|
||||
\begin{solution}
|
||||
Use \ref{simpletrans} and rewrite each $(a, b)$ as $(1, a)(1, b)(1, a)$. \par
|
||||
Showing that $(a, b) = (1, a)(1, b)(1, a)$ is fairly easy.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that any transposition $(a, b)$ is equal to the product $(a, a+1)(a+1, b)(a, a+1)$.
|
||||
|
||||
\begin{solution}
|
||||
This is the same as the $(1, a)(1, b)(1, a)$ case above, but we use $a + 1$
|
||||
as a \say{working slot} instead of $1$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that any permutation is a product of adjacent transpositions. \par
|
||||
(An \textit{adjacent transposition} swaps two adjacent elements, and thus looks like $(n, n+1)$)
|
||||
|
||||
\begin{solution}
|
||||
As before, we will use \ref{simpletrans} and rewrite the transpositions it produces in a form that fits the problem.
|
||||
We thus need to show that every transposition $(a, b)$ is a product of adjacent transpositions.
|
||||
|
||||
\vspace{8mm}
|
||||
|
||||
In the proof below, assume that $a < b$ and perform induction on $b - a$. \par
|
||||
|
||||
\textbf{Base Case:}\par
|
||||
If $b - a = 1$, we clearly see that $(a, b)$ is a product of adjacent. \par
|
||||
In fact, it \textit{is} an adjacent transposition.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
\textbf{Induction:}\par
|
||||
Now, say $b - a = n + 1$. \par
|
||||
Assume that all $(a, b)$ where $b - a \leq n$ are products of adjacent transpositions.\par
|
||||
Note that $(a, b) = (a, a+1)(a+1, b)(a, a+1)$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$(a, a+1)$ is an adjacent transposition, and $b - (a+1) = n$. \par
|
||||
Thus, $(a, b)$ is a product of adjacent transpositions.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
165
Advanced/Symmetric Groups/parts/2 groups.tex
Executable file
165
Advanced/Symmetric Groups/parts/2 groups.tex
Executable file
@ -0,0 +1,165 @@
|
||||
\section{Groups (review)}
|
||||
|
||||
\definition{}
|
||||
Before we continue, we must introduce a bit of notation:
|
||||
\begin{itemize}
|
||||
\item $S_n$ is the set of permutations on $n$ objects.
|
||||
\item $\mathbb{Z}_n$ is the set of integers mod $n$.
|
||||
|
||||
\item $\mathbb{Z}_n^\times$ is the set of integers mod $n$ with multiplicative inverses. \par
|
||||
In other words, it is the set of integers smaller than $n$ and coprime to $n$.\footnotemark{} \par
|
||||
For example, $\mathbb{Z}_{12}^\times = \{1, 5, 7, 11\}$.
|
||||
|
||||
\footnotetext{We proved this in another handout, but you may take it as fact here.}
|
||||
\end{itemize}
|
||||
|
||||
\problem{}
|
||||
What are the elements of $S_3$? \tab\hint{Use cycle notation}\par
|
||||
How about $\mathbb{Z}_{17}^\times$?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{}
|
||||
A \textit{group} $(G, \ast)$ consists of a set $G$ and an operator $\ast$. \par
|
||||
Groups always have the following properties:
|
||||
|
||||
\begin{enumerate}
|
||||
\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$.
|
||||
\item $\ast$ is \textit{associative}: $(a \ast b) \ast c = a \ast (b \ast c)$ for all $a,b,c \in G$
|
||||
\item There is an \textit{identity} $e \in G$, so that $a \ast e = a \ast e = a$ for all $a \in G$.
|
||||
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = b \ast a = e$. $b$ is called the \textit{inverse} of $a$. \par
|
||||
This element is written as $-a$ if our operator is addition and $a^{-1}$ otherwise.
|
||||
\end{enumerate}
|
||||
|
||||
Any pair $(G, \ast)$ that satisfies these properties is a group.
|
||||
|
||||
\problem{}
|
||||
Is $(\mathbb{Z}_5, +)$ a group? \par
|
||||
Is $(\mathbb{Z}_5, -)$ a group? \par
|
||||
\note[Note]{$+$ and $-$ refer to the usual operations in modular arithmetic.}
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the group with the fewest elements?
|
||||
|
||||
\begin{solution}
|
||||
Let $(G, \star)$ be our group, where $G = \{x\}$ and $\star$ is defined by $x \star x = x$
|
||||
|
||||
Verifying that the trivial group is a group is trivial.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that function composition is associative
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that $S_n$ is a group under composition.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a group with finitely many elements, and let $a \in G$. \par
|
||||
Show that $\exists n \in \mathbb{Z}^+$ so that $a^n = e$ \par
|
||||
\hint{$a^n = a \ast a \ast ... \ast a$ repeated $n$ times.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The smallest such $n$ defines the \textit{order} of $g$.
|
||||
|
||||
\begin{examplesolution}
|
||||
We've already done a special case of this problem! \par
|
||||
Find it in this handout, then rewrite your proof for an arbitrary (finite) group.
|
||||
\end{examplesolution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is the order of 5 in $(\mathbb{Z}_{25}, +)$? \par
|
||||
What is the order of 2 in $(\mathbb{Z}_{17}^\times, \times)$? \par
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{}<gendef>
|
||||
Let $G$ be a group, and let $g$ be an element of $G$. \par
|
||||
We say $g$ is a \textit{generator} if every other element of $G$ may be written as a power of $g$. \par
|
||||
|
||||
\problem{}
|
||||
Say the size of a group $G$ is $n$. \par
|
||||
If $g$ is a generator, what is its order? \par
|
||||
Provide a proof.
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Find the two generators in $(\mathbb{Z}, +)$ \par
|
||||
Then, find all generators of $(\mathbb{Z}_5, +)$
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
How many groups have only one generator?
|
||||
|
||||
\begin{solution}
|
||||
Only one: the trivial group. The inverse of a generator is also a generator!
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{}
|
||||
Let $S$ be a subset of the elements in $G$. \par
|
||||
We say that $S$ \textit{generates} $G$ if every element of $G$ may be written as a product of elements in $S$. \par
|
||||
\note{Note that this is an extension of \ref{gendef}.}
|
||||
|
||||
\problem{}
|
||||
We've already found a few generating sets of $S_n$. What are they?
|
||||
|
||||
\begin{solution}
|
||||
The following sets generate $S_n$:
|
||||
\begin{itemize}
|
||||
\item All transpositions
|
||||
\item All transpositions of the form $(1, k)$
|
||||
\item All adjacent transpositions
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The smallest generating set of $S_n$ consists of the transposition $(12)$ and the $n$-cycle $(1,2,...,n)$. \par
|
||||
The proof of this is a bonus problem later in the handout.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
163
Advanced/Symmetric Groups/parts/3 subgroup.tex
Normal file
163
Advanced/Symmetric Groups/parts/3 subgroup.tex
Normal file
@ -0,0 +1,163 @@
|
||||
\section{Subgroups}
|
||||
|
||||
\problem{}<s2s3share>
|
||||
What elements do $S_2$ and $S_3$ share?
|
||||
\vspace{2cm}
|
||||
|
||||
|
||||
|
||||
Consider the sets $\{1, 2\}$ and $\{1,2,3\}$. Clearly, $\{1, 2\} \subset \{1, 2, 3\}$. \par
|
||||
Can we say something similar about $S_2$ and $S_3$?
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Looking at \ref{s2s3share}, we may want to say that $S_2 \subset S_3$ since every element of $S_2$ is in $S_3$. \par
|
||||
This however, isn't as interesting as it could be. Remember that $S_2$ and $S_3$ are \textit{groups}, not \textit{sets}: \par
|
||||
their elements come with structure, which the \say{subset} relation does not capture.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
To account for this, we'll define a similar relation: subgroups.
|
||||
|
||||
\definition{}
|
||||
Let $G$ and $G'$ be groups. We say $G'$ is a \textit{subgroup} of $G$ (and write $G' \subset G$) if the following are true:\par
|
||||
(Note that $x, y$ are elements of $G$, and $xy$ is multiplication in $G$)
|
||||
\begin{itemize}
|
||||
\item the set of elements in $G'$ is a subset of the set of elements in $G$.
|
||||
\item the identity of $G$ is in $G'$
|
||||
\item $x,y \in G' \implies xy \in G'$
|
||||
\item $x \in G' \implies x^{-1} \in G'$
|
||||
\end{itemize}
|
||||
|
||||
The above definition may look faily scary, but the idea behind a subgroup is simple. \par
|
||||
Consider $S_3$ and $S_4$, the groups of permutations of $3$ and $4$ elements. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Say we have a set of four elements and only look at the first three. \par
|
||||
$S_3$ fully describes all the ways we can arrange those three elements:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (2b) at (0, -2) {2};
|
||||
\node (3b) at (1, -2) {3};
|
||||
\node (1b) at (2, -2) {1};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(4a)
|
||||
-- ($(4a) + (0, -1)$)
|
||||
-- ($(4b) + (0,1)$)
|
||||
-- (4b);
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
|
||||
\node[fill=white,draw=oblue,line width=0.3mm] at (1, -0.75) {$S_3$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that $S_3$ is a subgroup of $S_4$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
Let $G$ and $H$ be groups. We say that $G$ and $H$ are \textit{isomorphic} (and write $A \simeq B$) \par
|
||||
if there is a bijection $f: G \to H$ with the following properties:
|
||||
\begin{itemize}
|
||||
\item $f(e_G) = e_H$, where $e_G$ is the identity in $G$
|
||||
\item $f(x^{-1}) = f(x)^{-1}$ for all $x$ in $G$
|
||||
\item $f(xy) = f(x)f(y)$ for all $x, y$ in $G$
|
||||
\end{itemize}
|
||||
|
||||
Intuitively, you can think of isomorphism as a form of equivalence. \par
|
||||
If two groups are isomorphic, they only differ by the names of their elements. \par
|
||||
The function $f$ above tells us how to map one set of labels to the other.
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that $\mathbb{Z}_7^\times$ and $\mathbb{Z}_9^\times$ are isomorphic.
|
||||
\hint{
|
||||
Build a bijection with the above properties. \\
|
||||
Remember that a group is fully defined by its multiplication table.
|
||||
}
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that $\mathbb{Z}_{10}^\times$ and $\mathbb{Z}_5^\times$, and $\mathbb{Z}_4$ are isomorphic.
|
||||
\hint{
|
||||
Build a bijection with the above properties. \\
|
||||
Remember that a group is fully defined by its multiplication table.
|
||||
}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that isomorphism is transitive. \par
|
||||
That is, if $A \simeq B$ and $B \simeq C$, then $A \simeq C$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}<firstindex>
|
||||
How many subgroups of $S_4$ are isomorphic to $S_3$? \par
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
What are the orders of $S_3$ and $S_4$? \par
|
||||
How is this related to \ref{firstindex}?
|
||||
|
||||
\begin{solution}
|
||||
$|S_4| = |S_3| \times [S_4 : S_3]$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This solution is written using index notation, \par
|
||||
but the class doesn't need to know what it means yet.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
$S_4$ also has $S_2$ and the trivial group as subgroups. \par
|
||||
How many instances of each does $S_4$ contain?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
$(\mathbb{Z}_4, +)$ is also a subgroup of $S_4$. Find it! \par
|
||||
How many subgroups of $\mathbb{Z}_4$ are isomorphic to $S_4$?.
|
||||
|
||||
\begin{solution}
|
||||
A good hint is \say{look at generators.}
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
There are four instances of $\mathbb{Z}_4$ in $S_4$, each of which is generated by a 4-cycle of $S_n$. \par
|
||||
(i.e, the group generated by $(1234)$ is isomorphic to $\mathbb{Z}_4$)
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user