Stopping problems draft
This commit is contained in:
parent
716522e5c8
commit
29fc8b9aec
24
Advanced/Stopping Problems/main.tex
Executable file
24
Advanced/Stopping Problems/main.tex
Executable file
@ -0,0 +1,24 @@
|
|||||||
|
% use [nosolutions] flag to hide solutions.
|
||||||
|
% use [solutions] flag to show solutions.
|
||||||
|
\documentclass[
|
||||||
|
solutions,
|
||||||
|
singlenumbering,
|
||||||
|
unfinished
|
||||||
|
]{../../resources/ormc_handout}
|
||||||
|
\usepackage{../../resources/macros}
|
||||||
|
|
||||||
|
\usepackage{units}
|
||||||
|
|
||||||
|
\uptitlel{Advanced 2}
|
||||||
|
\uptitler{\smallurl{}}
|
||||||
|
\title{Stopping problems}
|
||||||
|
\subtitle{Prepared by Mark on \today{}}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
\input{parts/0 intro.tex}
|
||||||
|
\input{parts/1 secretary.tex}
|
||||||
|
|
||||||
|
\end{document}
|
26
Advanced/Stopping Problems/parts/0 intro.tex
Normal file
26
Advanced/Stopping Problems/parts/0 intro.tex
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
\generic{Setup:}
|
||||||
|
Suppose we toss a 6-sided die $n$ times. \par
|
||||||
|
It is easy to detect the first time we roll a 6. \par
|
||||||
|
What should we do if we want to annouce the \textit{last}?
|
||||||
|
|
||||||
|
\problem{}<lastl>
|
||||||
|
Given $l \leq n$, what is the probability that the last $l$
|
||||||
|
tosses of this die contain exactly one six?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
For what value of $l$ is the probability in \ref{lastl} maximal?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Finish your solution: \par
|
||||||
|
In $n$ rolls of a six-sided die, how do we (most reliably) detect the last time we roll a 6?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\pagebreak
|
57
Advanced/Stopping Problems/parts/1 secretary.tex
Normal file
57
Advanced/Stopping Problems/parts/1 secretary.tex
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
\section{The Secretary Problem}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
Say we need to hire a secretary. We have exactly one position to fill,
|
||||||
|
and we must fill it with one of $n$ applicants. These $n$ applicants,
|
||||||
|
if put together, can be ranked unambiguously from \say{best} to \say{worst}.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
We interview applicants in a random order, one at a time. \par
|
||||||
|
At the end of each interview, we either reject the applicant (and move on to the next one),
|
||||||
|
or select the applicant (which fills the position and ends the process).
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
Each applicant is interviewed exactly once---we cannot return to an applicant we've rejected. \par
|
||||||
|
In addition, we cannot reject the final applicant, as doing so will leave us without a secretary.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
For a given $n$, we would like to maximize our probability of selecting the best applicant. \par
|
||||||
|
This is called the \textit{secretary problem}.
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
If $n = 1$, what is the best hiring strategy, and what is the probability that we hire the best applicant?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
If $n = 2$, what is the best hiring strategy, and what is the probability that we hire the best applicant? \par
|
||||||
|
Is this different than the probability of hiring the best applicant at random?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
What happens if $n = 3$?
|
||||||
|
\begin{itemize}
|
||||||
|
\item Find the probability of hiring the best applicant at random
|
||||||
|
\item Find the best possible hiring strategy. \par
|
||||||
|
What is its probability of success?
|
||||||
|
\end{itemize}
|
||||||
|
\hint{In this case, three is a fairly small number. \par
|
||||||
|
It is easy to show that a strategy is optimal by considering all cases.}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Should we ever consider hiring a candidate that \textit{isn't} the best we've seen so far? \par
|
||||||
|
Why or why not? \hint{Read the problem again.da}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\remark{}
|
||||||
|
To find the optimal solution to the secretary problem, we'll restrict ourselves to
|
Loading…
x
Reference in New Issue
Block a user