Improved ECC handout
This commit is contained in:
@ -4,7 +4,7 @@ An ISBN\footnote{International Standard Book Number} is a unique numeric book id
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
Say we have a sequence of nine digits, forming a partial ISBN-10: $n_1 n_2 ... n_9$. \\
|
||||
Say we have a sequence of nine digits, forming a partial ISBN-10: $n_1 n_2 ... n_9$. \par
|
||||
The final digit, $n_{10}$, is calculated as follows:
|
||||
|
||||
$$
|
||||
@ -41,8 +41,8 @@ $$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \\
|
||||
$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \\
|
||||
$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \par
|
||||
$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \par
|
||||
$-n_{10} + n_{10} \equiv 0$
|
||||
|
||||
\vspace{2mm}
|
||||
@ -54,7 +54,7 @@ $$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Take a valid ISBN-10 and change one digit. Is it possible that you get another valid ISBN-10? \\
|
||||
Take a valid ISBN-10 and change one digit. Is it possible that you get another valid ISBN-10? \par
|
||||
Provide an example or a proof.
|
||||
|
||||
\begin{solution}
|
||||
@ -62,29 +62,29 @@ Provide an example or a proof.
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
If you change one digit of the ISBN, $S$ changes by $km$, where $k \in \{1,2,...,10\}$ and $|m| \leq 10$. \\
|
||||
If you change one digit of the ISBN, $S$ changes by $km$, where $k \in \{1,2,...,10\}$ and $|m| \leq 10$. \par
|
||||
$k$ and $m$ cannot be divisible by 11, thus $km$ cannot be divisible by 11.
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
We know that $S \equiv 0 \text{ (mod 11)}$. \\
|
||||
We know that $S \equiv 0 \text{ (mod 11)}$. \par
|
||||
After the change, the checksum is $S + km \equiv km \not\equiv 0 \text{ (mod 11)}$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Take a valid ISBN-10 and swap two adjacent digits. When will the result be a valid ISBN-10? \\
|
||||
Take a valid ISBN-10 and swap two adjacent digits. When will the result be a valid ISBN-10? \par
|
||||
This is called a \textit{transposition error}.
|
||||
|
||||
|
||||
\begin{solution}
|
||||
Let $n_1n_2...n_{10}$ be a valid ISBN-10. \\
|
||||
Let $n_1n_2...n_{10}$ be a valid ISBN-10. \par
|
||||
When we swap $n_i$ and $n_{i+1}$, we subtract $n_i$ and add $n_{i+1}$ to the checksum.
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
If the new ISBN is to be valid, we must have that $n_{i+1} - n_i \equiv 0 \text{ (mod 11)}$. \\
|
||||
If the new ISBN is to be valid, we must have that $n_{i+1} - n_i \equiv 0 \text{ (mod 11)}$. \par
|
||||
This is impossible unless $n_i = n_{i+1}$. Figure out why yourself.
|
||||
\end{solution}
|
||||
|
||||
@ -98,7 +98,7 @@ $$
|
||||
n_{13} = \Biggr[ \sum_{i=1}^{12} n_i \times (2 + (-1)^i) \Biggl] \text{ mod } 10
|
||||
$$
|
||||
|
||||
What is the last digit of the following ISBN-13? \\
|
||||
What is the last digit of the following ISBN-13? \par
|
||||
\texttt{978-0-380-97726-?}
|
||||
|
||||
\begin{solution}
|
||||
@ -108,54 +108,54 @@ What is the last digit of the following ISBN-13? \\
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Take a valid ISBN-13 and change one digit. Is it possible that you get another valid ISBN-13? \\
|
||||
Provide an example or a proof.
|
||||
Take a valid ISBN-13 and change one digit. Is it possible that you get another valid ISBN-13? \par
|
||||
If you can, provide an example; if you can't, provide a proof.
|
||||
|
||||
\begin{solution}
|
||||
Let $n_1n_2...n_{13}$ be a valid ISBN-13. Choose some $n_i$ and change it to $m_i$. \\
|
||||
Let $n_1n_2...n_{13}$ be a valid ISBN-13. Choose some $n_i$ and change it to $m_i$. \par
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
Since $n_i$, $m_i$ $\in \{0, 1, 2, ..., 9\}$, $-9 \leq n_i - m_i \leq 9$. \\
|
||||
Since $n_i$, $m_i$ $\in \{0, 1, 2, ..., 9\}$, $-9 \leq n_i - m_i \leq 9$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Case 0: $i$ is 13 \\
|
||||
Case 0: $i$ is 13 \par
|
||||
This is trivial.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Case 1: $i$ is odd \\
|
||||
For the new ISBN to be valid, we need $n_i - m_i \equiv 0 \text{ (mod 10)}$. \\
|
||||
Case 1: $i$ is odd \par
|
||||
For the new ISBN to be valid, we need $n_i - m_i \equiv 0 \text{ (mod 10)}$. \par
|
||||
This cannot happen if $n_i \neq m_i$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Case 2: $i$ is even \\
|
||||
For the new ISBN to be valid, we need $3(n_i - m_i) \equiv 0 \text{ (mod 10)}$ \\
|
||||
Case 2: $i$ is even \par
|
||||
For the new ISBN to be valid, we need $3(n_i - m_i) \equiv 0 \text{ (mod 10)}$ \par
|
||||
This cannot happen, 10 and 3 are coprime.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Take a valid ISBN-13 and swap two adjacent digits. When will the result be a valid ISBN-13? \\
|
||||
Take a valid ISBN-13 and swap two adjacent digits. When will the result be a valid ISBN-13? \par
|
||||
\hint{The answer here is more interesting than it was last time.}
|
||||
|
||||
\begin{solution}
|
||||
Say we swap $n_i$ and $n_{i+1}$, where $i \in \{1, 2, ..., 11\}$. \\
|
||||
The checksum changes by $2(n_{i+1} - n_i)$, and will \\
|
||||
Say we swap $n_i$ and $n_{i+1}$, where $i \in \{1, 2, ..., 11\}$. \par
|
||||
The checksum changes by $2(n_{i+1} - n_i)$, and will \par
|
||||
remain the same if this value is $\equiv 0 \text{ (mod 10)}$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
\texttt{978-0-08-2066-46-6} was a valid ISBN until I changed a single digit. \\
|
||||
Can you tell me which digit I changed?
|
||||
\problem{}<isbn-nocorrect>
|
||||
\texttt{978-0-08-2066-46-6} was a valid ISBN until I changed a single digit. \par
|
||||
Can you find the digit I changed? Can you recover the original ISBN?
|
||||
|
||||
\begin{solution}
|
||||
Nope, unless you look at the meaning of each digit in the spec. \\
|
||||
Nope, unless you look at the meaning of each digit in the spec. \par
|
||||
If you're unlucky, maybe not even then.
|
||||
\end{solution}
|
||||
|
||||
|
Reference in New Issue
Block a user