Convert "Partition Products" to typst
This commit is contained in:
parent
eef1aa5c0e
commit
151d05ea3a
@ -1,57 +0,0 @@
|
|||||||
\documentclass[
|
|
||||||
solutions,
|
|
||||||
singlenumbering,
|
|
||||||
nopagenumber
|
|
||||||
]{../../../lib/tex/ormc_handout}
|
|
||||||
\usepackage{../../../lib/tex/macros}
|
|
||||||
|
|
||||||
|
|
||||||
\title{Warm-Up: Partition Products}
|
|
||||||
\uptitler{\smallurl{}}
|
|
||||||
\subtitle{Prepared by Mark on \today.}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
|
|
||||||
\maketitle
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Take any positive integer $n$. \par
|
|
||||||
Now, write it as sum of smaller positive integers: $n = a_1 + a_2 + ... + a_k$ \par
|
|
||||||
Maximize the product $a_1 \times a_2 \times ... \times a_k$
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
|
|
||||||
\textbf{Interesting Solution:}
|
|
||||||
|
|
||||||
Of course, all $a_i$ should be greater than $1$. \par
|
|
||||||
Also, all $a_i$ should be smaller than four, since $x \leq x(x-2)$ if $x \geq 4$. \par
|
|
||||||
Thus, we're left with sequences that only contain 2 and 3. \par
|
|
||||||
\note{Note that two twos are the same as one four, but we exclude fours for simplicity.}
|
|
||||||
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
Finally, we see that $3^2 > 2^3$, so any three twos are better repackaged as two threes. \par
|
|
||||||
The best sequence $a_i$ thus consists of a maximal number of threes followed by 0, 1, or 2 twos.
|
|
||||||
|
|
||||||
\linehack{}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\textbf{Calculus Solution:}
|
|
||||||
|
|
||||||
First, solve this problem for equal, non-integer $a_i$:
|
|
||||||
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
We know $n = \prod{a_i}$, thus $\ln(n) = \sum{\ln(a_i)}$. \par
|
|
||||||
If all $a_i$ are equal, we get $\ln(n) = k \times \ln(n / k)$. \par
|
|
||||||
Derive wrt $k$ and set to zero to get $\ln(n / k) = 1$ \par
|
|
||||||
So $k = n / e$ and $n / k = e \approx 2.7$
|
|
||||||
|
|
||||||
\vspace{2mm}
|
|
||||||
|
|
||||||
If we try to approximate this with integers, we get the same solution as above.
|
|
||||||
\end{solution}
|
|
||||||
\end{document}
|
|
47
src/Warm-Ups/Partition Products/main.typ
Normal file
47
src/Warm-Ups/Partition Products/main.typ
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
#import "@local/handout:0.1.0": *
|
||||||
|
|
||||||
|
#show: doc => handout(
|
||||||
|
doc,
|
||||||
|
quarter: link(
|
||||||
|
"https://betalupi.com/handouts",
|
||||||
|
"betalupi.com/handouts",
|
||||||
|
),
|
||||||
|
|
||||||
|
title: [Warm-Up: Partition Products],
|
||||||
|
by: "Mark",
|
||||||
|
)
|
||||||
|
|
||||||
|
#problem()
|
||||||
|
Take any positive integer $n$. \
|
||||||
|
Now, write it as sum of smaller positive integers: $n = a_1 + a_2 + ... a_k$ \
|
||||||
|
Maximize the product $a_1 #sym.times a_2 #sym.times ... #sym.times a_k$
|
||||||
|
|
||||||
|
|
||||||
|
#solution([
|
||||||
|
*Interesting Solution:*
|
||||||
|
|
||||||
|
Of course, all $a_i$ should be greater than $1$. \
|
||||||
|
Also, all $a_i$ should be smaller than four, since $x <= x(x-2)$ if $x >= 4$. \
|
||||||
|
Thus, we're left with sequences that only contain 2 and 3. \
|
||||||
|
#note([Note that two twos are the same as one four, but we exclude fours for simplicity.])
|
||||||
|
|
||||||
|
#v(2mm)
|
||||||
|
|
||||||
|
Finally, we see that $3^2 > 2^3$, so any three twos are better repackaged as two threes. \
|
||||||
|
The best sequence $a_i$ thus consists of a maximal number of threes followed by 0, 1, or 2 twos.
|
||||||
|
|
||||||
|
#v(8mm)
|
||||||
|
|
||||||
|
*Calculus Solution:*
|
||||||
|
|
||||||
|
First, solve this problem for equal, real $a_i$:
|
||||||
|
#v(2mm)
|
||||||
|
We know $n = product(a_i)$, thus $ln(n) = sum(ln(a_i))$. \
|
||||||
|
If all $a_i$ are equal, we get $ln(n) = k #sym.times ln(n / k)$. \
|
||||||
|
Derive wrt $k$ and set to zero to get $ln(n / k) = 1$ \
|
||||||
|
So $k = n / e$ and $n / k = e #sym.approx 2.7$
|
||||||
|
|
||||||
|
#v(2mm)
|
||||||
|
|
||||||
|
If we try to approximate this with integers, we get the same solution as above.
|
||||||
|
])
|
Loading…
x
Reference in New Issue
Block a user