Minor edits
This commit is contained in:
parent
d20ddd26b1
commit
11e299c876
@ -44,7 +44,7 @@
|
|||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Is the set of all linear maps a vector space?
|
Show that the set of all linear maps is a vector space.
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
@ -11,14 +11,8 @@ A =
|
|||||||
$$
|
$$
|
||||||
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
|
||||||
|
|
||||||
\problem{}
|
We can define the product of a matrix $A$ and a vector $v$ as follows:
|
||||||
Draw a $3 \times 2$ matrix.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\definition{}
|
|
||||||
We can define the \say{product\footnotemark{}} of a matrix $A$ and a vector $v$:
|
|
||||||
\footnotetext{This is an uncommon word to use in this context. You will soon see why.}
|
|
||||||
$$
|
$$
|
||||||
Av =
|
Av =
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
@ -34,7 +28,7 @@ Av =
|
|||||||
4a + 5b + 6c
|
4a + 5b + 6c
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
$$
|
$$
|
||||||
Look closely. Each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
Each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
Av =
|
Av =
|
||||||
@ -56,6 +50,13 @@ $$
|
|||||||
|
|
||||||
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Compute the following:
|
Compute the following:
|
||||||
|
|
||||||
@ -156,7 +157,7 @@ It is a bit more interesting to think of matrix-vector multiplication in the fol
|
|||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
Be aware that this is only a model for intuition. \\
|
This is only a model for intuition, though. \\
|
||||||
Make sure you understand the dot product definition on the previous page.
|
Make sure you understand the dot product definition on the previous page.
|
||||||
|
|
||||||
\vspace{5mm}
|
\vspace{5mm}
|
||||||
@ -167,24 +168,15 @@ Conversely, every $n \times m$ matrix represents a liner map $T: \mathbb{R}^n \t
|
|||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
In other words, \textbf{matrices are linear transformations}. \\
|
In other words, \textbf{matrices are linear transformations}.
|
||||||
If you only learn only one thing today, this should be it.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}<prooffwd>
|
\problem{}<prooffwd>
|
||||||
Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
|
Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
|
||||||
Before you start, answer the following questions:
|
\hint{What is $A$? What is $v$? What are their sizes?}
|
||||||
\begin{itemize}
|
|
||||||
\item What is $A$?
|
|
||||||
\item What is $v$?
|
|
||||||
\item What are their sizes?
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}<proofback>
|
\problem{}<proofback>
|
||||||
Show that any linear transformation can be written as a matrix.
|
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
@ -197,7 +189,7 @@ Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector spac
|
|||||||
\problem{}
|
\problem{}
|
||||||
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}p$. \\
|
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}p$. \\
|
||||||
Find a matrix that corresponds to $D$. \\
|
Find a matrix that corresponds to $D$. \\
|
||||||
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How solutions?}
|
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?}
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
Loading…
x
Reference in New Issue
Block a user