Added masses intro
This commit is contained in:
		
							
								
								
									
										34
									
								
								Advanced/Geometry of Masses/main.tex
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										34
									
								
								Advanced/Geometry of Masses/main.tex
									
									
									
									
									
										Executable file
									
								
							@@ -0,0 +1,34 @@
 | 
				
			|||||||
 | 
					% use [nosolutions] flag to hide solutions.
 | 
				
			||||||
 | 
					% use [solutions] flag to show solutions.
 | 
				
			||||||
 | 
					\documentclass[
 | 
				
			||||||
 | 
						solutions,
 | 
				
			||||||
 | 
						singlenumbering,
 | 
				
			||||||
 | 
						shortwarning
 | 
				
			||||||
 | 
					]{../../resources/ormc_handout}
 | 
				
			||||||
 | 
					\usepackage{../../resources/macros}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\usepackage{tikz}
 | 
				
			||||||
 | 
					\usetikzlibrary{patterns}
 | 
				
			||||||
 | 
					\usetikzlibrary{shapes.geometric}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\usepackage{graphicx}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\uptitlel{Advanced 2}
 | 
				
			||||||
 | 
					\uptitler{\smallurl{}}
 | 
				
			||||||
 | 
					\title{Geometry of Masses I}
 | 
				
			||||||
 | 
					\subtitle{Prepared by Sunny \& Mark on \today{}}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{document}
 | 
				
			||||||
 | 
						\maketitle
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\input{parts/0 balance 1d.tex}
 | 
				
			||||||
 | 
						\input{parts/1 balance 2d.tex}
 | 
				
			||||||
 | 
						%\input{parts/1 continuous}
 | 
				
			||||||
 | 
						%\input{parts/2 pappus}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\end{document}
 | 
				
			||||||
							
								
								
									
										176
									
								
								Advanced/Geometry of Masses/parts/0 balance 1d.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										176
									
								
								Advanced/Geometry of Masses/parts/0 balance 1d.tex
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,176 @@
 | 
				
			|||||||
 | 
					\section{Balancing a line}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\example{}
 | 
				
			||||||
 | 
					Consider a mass $m_1$ on top of a pin. \par
 | 
				
			||||||
 | 
					Due to gravity, the mass exerts a force on the pin at the point of contact. \par
 | 
				
			||||||
 | 
					For simplicity, we'll say that the magnitude of this force is equal the mass of the object---
 | 
				
			||||||
 | 
					that is, $m_1$.
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale=2]
 | 
				
			||||||
 | 
							\fill[color = black] (0, 0.1) circle[radius=0.1];
 | 
				
			||||||
 | 
							\node[above] at (0, 0.20) {$m_1$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines] (0, 0) -- (-0.15, -0.3) -- (0.15, -0.3) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[color = black, opacity = 0.5] (1, 0.1) circle[radius=0.1];
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines, opacity = 0.5] (1, 0) -- (0.85, -0.3) -- (1.15, -0.3) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[->, line width = 0.5mm] (1, 0) -- (1, -0.5) node[below] {$m_1$};
 | 
				
			||||||
 | 
							%\draw[->, line width = 0.5mm, dashed] (1, 0) -- (1, 0.5) node[above] {$-m_1$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = red] (1, 0) circle[radius=0.025];
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					The pin exerts an opposing force on the mass at the same point, and the system thus stays still.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\remark{}<fakeunits>
 | 
				
			||||||
 | 
					Forces, distances, and torques in this handout will be provided in arbitrary (though consistent) units. \par
 | 
				
			||||||
 | 
					We have no need for physical units in this handout.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\example{}
 | 
				
			||||||
 | 
					Now attach this mass to a massless rod and try to balance the resulting system. \par
 | 
				
			||||||
 | 
					As you might expect, it is not stable: the rod pivots and falls down.
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale=2]
 | 
				
			||||||
 | 
							\fill[color = black] (-0.3, 0.0) circle[radius=0.1];
 | 
				
			||||||
 | 
							\node[above] at (-0.3, 0.1) {$m_1$};
 | 
				
			||||||
 | 
							\draw[-, line width = 0.5mm] (-0.8, 0) -- (0.5, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines] (0, 0) -- (-0.15, -0.3) -- (0.15, -0.3) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[color = black, opacity = 0.5] (1.2, 0.0) circle[radius=0.1];
 | 
				
			||||||
 | 
							\draw[-, line width = 0.5mm, opacity = 0.5] (0.7, 0) -- (1.9, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines, opacity = 0.5] (1.5, 0) -- (1.35, -0.3) -- (1.65, -0.3) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[->, line width = 0.5mm] (1.2, 0) -- (1.2, -0.5) node[below] {$m_1$};
 | 
				
			||||||
 | 
							%\draw[->, line width = 0.5mm, dashed] (1.5, 0) -- (1.5, 0.5) node[above] {$f_p$};
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					This is because the force $m_1$ is offset from the pivot (i.e, the tip of the pin). \par
 | 
				
			||||||
 | 
					It therefore exerts a \textit{torque} on the mass-rod system, causing it to rotate and fall.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{Torque}
 | 
				
			||||||
 | 
					Consider a rod on a single pivot point.
 | 
				
			||||||
 | 
					If a force with magnitude $m_1$ is applied at an offset $d$ from the pivot point,
 | 
				
			||||||
 | 
					the system experiences a \textit{torque} with magnitude $m_1 \times d$.
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale=2]
 | 
				
			||||||
 | 
							\draw[-, line width = 0.5mm] (-1.2, 0) -- (0.5, 0);
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines] (0, 0) -- (-0.15, -0.3) -- (0.15, -0.3) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[->, line width = 0.5mm, dashed] (-0.8, 0) -- (-0.8, -0.5) node[below] {$m_1$};
 | 
				
			||||||
 | 
							\fill[color = red] (-0.8, 0.0) circle[radius=0.05];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[-, line width = 0.3mm, double] (-0.8, 0.1) -- (-0.8, 0.2) -- (0, 0.2) node [midway, above] {$d$} -- (0, 0.1);
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					We'll say that a \textit{positive torque} results in \textit{clockwise} rotation,
 | 
				
			||||||
 | 
					and a \textit{negative torque} results in a \textit{counterclockwise rotation}.
 | 
				
			||||||
 | 
					As stated in \ref{fakeunits}, torque is given in arbitrary \say{torque units}
 | 
				
			||||||
 | 
					consistent with our units of distance and force.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% I believe the convention used in physics is opposite ours, but that's fine.
 | 
				
			||||||
 | 
					% Positive = clockwise is more intuitive given our setup,
 | 
				
			||||||
 | 
					% and we only use torque to define CoM anyway.
 | 
				
			||||||
 | 
					Look at the diagram above and convince yourself that this convention makes sense:
 | 
				
			||||||
 | 
					\begin{itemize}
 | 
				
			||||||
 | 
						\item $m_1$ is positive \note{(masses are usually positive)}
 | 
				
			||||||
 | 
						\item $d$ is negative \note{($m_1$ is \textit{behind} the pivot)}
 | 
				
			||||||
 | 
						\item therefore, $m_1 \times d$ is negative.
 | 
				
			||||||
 | 
					\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{Center of mass}
 | 
				
			||||||
 | 
					The \textit{center of mass} of a physical system is the point at which one can place a pivot \par
 | 
				
			||||||
 | 
					so that the total torque the system experiences is 0. \par
 | 
				
			||||||
 | 
					\note{In other words, it is the point at which the system may be balanced on a pin.}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Consider the following physical system:
 | 
				
			||||||
 | 
					we have a massless rod of length $1$, with a mass of size 3 at position $0$
 | 
				
			||||||
 | 
					and a mass of size $1$ at position $1$.
 | 
				
			||||||
 | 
					Find the position of this system's center of mass. \par
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale=2]
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines] (0, 0) -- (-0.15, -0.3) -- (0.15, -0.3) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[-, line width = 0.5mm] (-0.5, 0) -- (1.5, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black] (-0.5, 0) circle[radius=0.1];
 | 
				
			||||||
 | 
							\node[above] at (-0.5, 0.2) {$3$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black] (1.5, 0) circle[radius=0.08];
 | 
				
			||||||
 | 
							\node[above] at (1.5, 0.2) {$1$};
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Do the same for the following system, where $m_1$ and $m_2$ are arbitrary masses.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale=2]
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines] (0.7, 0) -- (0.55, -0.3) -- (0.85, -0.3) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[-, line width = 0.5mm] (-0.5, 0) -- (1.5, 0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black] (-0.5, 0) circle[radius=0.1];
 | 
				
			||||||
 | 
							\node[above] at (-0.5, 0.2) {$m_1$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black] (1.5, 0) circle[radius=0.08];
 | 
				
			||||||
 | 
							\node[above] at (1.5, 0.2) {$m_2$};
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{}
 | 
				
			||||||
 | 
					Consider a massless, horizontal rod of infinite length. \par
 | 
				
			||||||
 | 
					Affix a finite number of point masses to this rod. \par
 | 
				
			||||||
 | 
					We will call the resulting object a \textit{one-dimensional system of masses}:
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale=1]
 | 
				
			||||||
 | 
							\draw[<->, line width = 0.5mm] (-4, 0) -- (4, 0);
 | 
				
			||||||
 | 
							\node[left] at (-4, 0) {$...$};
 | 
				
			||||||
 | 
							\node[right] at (4, 0) {$...$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black] (-2.5, 0) circle[radius=0.12];
 | 
				
			||||||
 | 
							\node[above] at (-2.5, 0.15) {$m_1$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black] (-0.5, 0) circle[radius=0.1];
 | 
				
			||||||
 | 
							\node[above] at (-0.5, 0.15) {$m_2$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black] (1.5, 0) circle[radius=0.15];
 | 
				
			||||||
 | 
							\node[above] at (1.5, 0.15) {$m_3$};
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					\vspace{5mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}<massline>
 | 
				
			||||||
 | 
					Consider a one-dimensional system of masses consisting of $n$ masses $m_1, m_2, ..., m_n$, \par
 | 
				
			||||||
 | 
					with each $m_i$ positioned at $x_i$. Show that the resulting system always has a unique center of mass. \par
 | 
				
			||||||
 | 
					\hint{Prove this by construction: find the point!}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
							
								
								
									
										148
									
								
								Advanced/Geometry of Masses/parts/1 balance 2d.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										148
									
								
								Advanced/Geometry of Masses/parts/1 balance 2d.tex
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,148 @@
 | 
				
			|||||||
 | 
					\section{Balancing a plane}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{}
 | 
				
			||||||
 | 
					Consider a massless two-dimensional plane. \par
 | 
				
			||||||
 | 
					Affix a finite number of point masses to this plane. \par
 | 
				
			||||||
 | 
					We will call the resulting object a \textit{two-dimensional system of masses:}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale = 0.5]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							%\draw[
 | 
				
			||||||
 | 
							%	line width = 0mm,
 | 
				
			||||||
 | 
							%	pattern = north west lines,
 | 
				
			||||||
 | 
							%	pattern color = blue,
 | 
				
			||||||
 | 
							%]
 | 
				
			||||||
 | 
							%	(1, 0)
 | 
				
			||||||
 | 
							%	-- (0.5, 0.866)
 | 
				
			||||||
 | 
							%	-- (-0.5, 0.866)
 | 
				
			||||||
 | 
							%	-- (-1, 0)
 | 
				
			||||||
 | 
							%	-- (-0.5, -0.866)
 | 
				
			||||||
 | 
							%	-- (0.5, -0.866)
 | 
				
			||||||
 | 
							%	-- cycle;
 | 
				
			||||||
 | 
							%\draw[
 | 
				
			||||||
 | 
							%	line width = 0.5mm,
 | 
				
			||||||
 | 
							%	blue
 | 
				
			||||||
 | 
							%]
 | 
				
			||||||
 | 
							%	(1, 0)
 | 
				
			||||||
 | 
							%	-- (0.5, 0.866)
 | 
				
			||||||
 | 
							%	-- (-0.5, 0.866)
 | 
				
			||||||
 | 
							%	-- (-1, 0)
 | 
				
			||||||
 | 
							%	-- (-0.5, -0.866)
 | 
				
			||||||
 | 
							%	-- (0.5, -0.866)
 | 
				
			||||||
 | 
							%	-- cycle;
 | 
				
			||||||
 | 
							%\fill[color = blue] (0, 0) circle[radius=0.3];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black]
 | 
				
			||||||
 | 
								(-3, 3) circle[radius = 0.5]
 | 
				
			||||||
 | 
								node[above] at (-3, 3.5) {$m_1$ at $(x_1, y_1)$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black]
 | 
				
			||||||
 | 
								(-5, -1.5) circle[radius = 0.4]
 | 
				
			||||||
 | 
								node[above] at (-5, -1.0) {$m_2$ at $(x_2, y_2)$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black]
 | 
				
			||||||
 | 
								(3, -3) circle[radius = 0.35]
 | 
				
			||||||
 | 
								node[above] at (3, -2.5) {$m_3$ at $(x_3, y_3)$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm]
 | 
				
			||||||
 | 
								(-7.5, -4.2)
 | 
				
			||||||
 | 
								-- (6, -4.2)
 | 
				
			||||||
 | 
								-- (6, 5)
 | 
				
			||||||
 | 
								-- (-7.5, 5)
 | 
				
			||||||
 | 
								-- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					\vspace{5mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\problem{}
 | 
				
			||||||
 | 
					Show that any two-dimensional system of masses has a unique center of mass. \par
 | 
				
			||||||
 | 
					\hint{
 | 
				
			||||||
 | 
						If a plane balances on a pin, it does not tilt in the $x$ or $y$ direction. \par
 | 
				
			||||||
 | 
						See the diagram below.
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					\begin{center}
 | 
				
			||||||
 | 
						\begin{tikzpicture}[scale = 0.5]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							% Horizontal
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (-3, 3) -- (-3, -5);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (-5, -1.5) -- (-5, -5);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (3, -3) -- (3, -5);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (0, 0) -- (0, -5);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm] (-7, -5) -- (6.5, -5);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = gray] (-3, -5) circle[radius = 0.3];
 | 
				
			||||||
 | 
							\fill[color = gray] (-5, -5) circle[radius = 0.3];
 | 
				
			||||||
 | 
							\fill[color = gray] (3, -5) circle[radius = 0.3];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines]
 | 
				
			||||||
 | 
								(0, -5) -- (-0.6, -6) -- (0.6, -6) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							% Vertical
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (-3, 3) -- (8, 3);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (-5, -1.5) -- (8, -1.5);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (3, -3) -- (8, -3);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm, dotted, gray] (0, 0) -- (8, 0);
 | 
				
			||||||
 | 
							\draw[line width = 0.5mm] (8, 4) -- (8, -4);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = gray] (8, 3) circle[radius = 0.3];
 | 
				
			||||||
 | 
							\fill[color = gray] (8, -1.5) circle[radius = 0.3];
 | 
				
			||||||
 | 
							\fill[color = gray] (8, -3) circle[radius = 0.3];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[line width = 0.25mm, pattern=north west lines]
 | 
				
			||||||
 | 
							(8, 0) -- (9, -0.6) -- (9, 0.6) -- cycle;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\draw[
 | 
				
			||||||
 | 
								line width = 0mm,
 | 
				
			||||||
 | 
								pattern = north west lines,
 | 
				
			||||||
 | 
								pattern color = blue,
 | 
				
			||||||
 | 
							]
 | 
				
			||||||
 | 
								(1, 0)
 | 
				
			||||||
 | 
								-- (0.5, 0.866)
 | 
				
			||||||
 | 
								-- (-0.5, 0.866)
 | 
				
			||||||
 | 
								-- (-1, 0)
 | 
				
			||||||
 | 
								-- (-0.5, -0.866)
 | 
				
			||||||
 | 
								-- (0.5, -0.866)
 | 
				
			||||||
 | 
								-- cycle;
 | 
				
			||||||
 | 
							\draw[
 | 
				
			||||||
 | 
								line width = 0.5mm,
 | 
				
			||||||
 | 
								blue
 | 
				
			||||||
 | 
							]
 | 
				
			||||||
 | 
								(1, 0)
 | 
				
			||||||
 | 
								-- (0.5, 0.866)
 | 
				
			||||||
 | 
								-- (-0.5, 0.866)
 | 
				
			||||||
 | 
								-- (-1, 0)
 | 
				
			||||||
 | 
								-- (-0.5, -0.866)
 | 
				
			||||||
 | 
								-- (0.5, -0.866)
 | 
				
			||||||
 | 
								-- cycle;
 | 
				
			||||||
 | 
							\fill[color = blue] (0, 0) circle[radius=0.3]
 | 
				
			||||||
 | 
								node[above] at (0, 1) {Pivot};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black]
 | 
				
			||||||
 | 
								(-3, 3) circle[radius = 0.5]
 | 
				
			||||||
 | 
								node[above] at (-3, 3.5) {$m_1$ at $(x_1, y_1)$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black]
 | 
				
			||||||
 | 
								(-5, -1.5) circle[radius = 0.4]
 | 
				
			||||||
 | 
								node[above] at (-5.5, -1.0) {$m_2$ at $(x_2, y_2)$};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							\fill[color = black]
 | 
				
			||||||
 | 
								(3, -3) circle[radius = 0.35]
 | 
				
			||||||
 | 
								node[above] at (3, -2.8) {$m_3$ at $(x_3, y_3)$};
 | 
				
			||||||
 | 
						\end{tikzpicture}
 | 
				
			||||||
 | 
					\end{center}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\vfill
 | 
				
			||||||
 | 
					\pagebreak
 | 
				
			||||||
		Reference in New Issue
	
	Block a user