Edits
This commit is contained in:
parent
d238f12f69
commit
0afeaa8c6d
@ -18,44 +18,43 @@
|
|||||||
\input{parts/1 really big.tex}
|
\input{parts/1 really big.tex}
|
||||||
\input{parts/2 cartesian.tex}
|
\input{parts/2 cartesian.tex}
|
||||||
\input{parts/3 functions.tex}
|
\input{parts/3 functions.tex}
|
||||||
\input{parts/4 dense.tex}
|
\input{parts/4 enumeration.tex}
|
||||||
|
\input{parts/dense.tex}
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
%\vfill
|
||||||
\pagebreak
|
%\pagebreak
|
||||||
|
|
||||||
\section{Bonus Problems}
|
%\section{Bonus Problems}
|
||||||
|
|
||||||
\problem{}
|
%\problem{}
|
||||||
Using only sets, how can we build an ordered pair $(a, b)$? \par
|
%Using only sets, how can we build an ordered pair $(a, b)$? \par
|
||||||
$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par
|
%$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par
|
||||||
Of course, $(a, b) \neq (b, a)$.
|
%Of course, $(a, b) \neq (b, a)$.
|
||||||
|
|
||||||
\begin{solution}
|
%\begin{solution}
|
||||||
$(a, b) = \{ \{a\}, \{a, b\}\}$
|
% $(a, b) = \{ \{a\}, \{a, b\}\}$
|
||||||
\end{solution}
|
%\end{solution}
|
||||||
|
|
||||||
\vfill
|
%\vfill
|
||||||
|
|
||||||
|
%\problem{}
|
||||||
|
%Let $R$ be the set of all sets that do not contain themselves. \par
|
||||||
|
%Does $R$ exist? \par
|
||||||
|
%\hint{If $R$ exists, do we get a contradiction?}
|
||||||
|
%\vfill
|
||||||
|
|
||||||
\problem{}
|
%\problem{}
|
||||||
Let $R$ be the set of all sets that do not contain themselves. \par
|
%Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
|
||||||
Does $R$ exist? \par
|
%Provide a proof or a counterexample.
|
||||||
\hint{If $R$ exists, do we get a contradiction?}
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
|
%\vfill
|
||||||
|
|
||||||
\problem{}
|
%\problem{}
|
||||||
Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
|
%Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par
|
||||||
Provide a proof or a counterexample.
|
%Provide a proof or a counterexample.
|
||||||
|
|
||||||
\vfill
|
%\vfill
|
||||||
|
%\pagebreak
|
||||||
\problem{}
|
|
||||||
Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par
|
|
||||||
Provide a proof or a counterexample.
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
@ -205,12 +205,6 @@ Is this function one-to-one? Is it onto?
|
|||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Consider the function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = x^2$. \par
|
|
||||||
Is this function one-to-one? Is it onto?
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ defined below. \par
|
Consider the function $f: \mathbb{Z} \to \mathbb{Z}$ defined below. \par
|
||||||
Is this function one-to-one? Is it onto?
|
Is this function one-to-one? Is it onto?
|
||||||
@ -375,4 +369,7 @@ Show that no bijection between $A$ and $B$ exists.
|
|||||||
|
|
||||||
Intuitively, you can think of a bijection as a \say{matching} between elements of $A$ and $B$. If we were to draw a bijection, we'd see an arrow connecting every element in $A$ to every element in $B$. If a bijection exists, every element of $A$ directly corresponds to an element of $B$, therefore $A$ and $B$ must have the same number of elements.
|
Intuitively, you can think of a bijection as a \say{matching} between elements of $A$ and $B$. If we were to draw a bijection, we'd see an arrow connecting every element in $A$ to every element in $B$. If a bijection exists, every element of $A$ directly corresponds to an element of $B$, therefore $A$ and $B$ must have the same number of elements.
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
We say two sets $A$ and $B$ are \textit{equinumerous} if there exists a bijection $f: A \to B$.
|
||||||
|
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
46
Advanced/Size of Sets/parts/4 enumeration.tex
Normal file
46
Advanced/Size of Sets/parts/4 enumeration.tex
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
\section{Enumerations}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
Let $A$ be a set. An \textit{enumeration} is a bijection from $A$ to $\{1, 2, ..., n\}$ or $\mathbb{N}$.\par
|
||||||
|
An enumeration assignes an element of $\mathbb{N}$ to each element of $A$.
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
We say a set is \textit{countable} if it has an enumeration.\par
|
||||||
|
We consider the empty set trivially countable.
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find an enumeration of $\{\texttt{A}, \texttt{B}, ..., \texttt{Z}\}$.
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find an enumeration of $\mathbb{N}$.
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find an enumeration of the set of squares $\{1, 4, 9, 16, ...\}$.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Let $A$ and $B$ be equinumerous sets. \par
|
||||||
|
Show that $A$ is countable iff $B$ is countable.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $\mathbb{Z}$ is countable.
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $\mathbb{N}^2$ is countable.
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $\mathbb{N}^k$ is countable.
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that if $A$ and $B$ are countable, $A \cup B$ is also countable.
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\pagebreak
|
@ -1,6 +1,4 @@
|
|||||||
\section{Dense Orderings}
|
\section*{Bonus: Dense Orderings}
|
||||||
|
|
||||||
\note[Note]{This section is fairly difficult. If you get stuck here, try the bonus problems on the next page.}
|
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
An \textit{ordered set} is a set with an \say{order} attached to it. \par
|
An \textit{ordered set} is a set with an \say{order} attached to it. \par
|
||||||
@ -17,11 +15,13 @@ We say an ordered set $A$ is \textit{dense} if for any $a, b \in A$ there is a $
|
|||||||
Intuitively, this means that there is an element of $A$ between any two elements of $A$.
|
Intuitively, this means that there is an element of $A$ between any two elements of $A$.
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that the ordered set $(\mathbb{Q}, <)$ is dense.
|
Show that the ordered set $(\mathbb{Q}, <)$ is dense.\par
|
||||||
|
\hint{Elements of $\mathbb{Q}$ are defined as fractions $\frac{p}{q}$, where $p$ and $q$ are integers.}
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that the ordered set $(\mathbb{R}, <)$ is dense.
|
Show that the ordered set $(\mathbb{R}, <)$ is dense.\par
|
||||||
|
\hint{We can define a \say{real number} as a decimal, finite or infinite.}
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
Loading…
x
Reference in New Issue
Block a user