Edits
This commit is contained in:
@ -18,44 +18,43 @@
|
||||
\input{parts/1 really big.tex}
|
||||
\input{parts/2 cartesian.tex}
|
||||
\input{parts/3 functions.tex}
|
||||
\input{parts/4 dense.tex}
|
||||
\input{parts/4 enumeration.tex}
|
||||
\input{parts/dense.tex}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
%\vfill
|
||||
%\pagebreak
|
||||
|
||||
\section{Bonus Problems}
|
||||
%\section{Bonus Problems}
|
||||
|
||||
\problem{}
|
||||
Using only sets, how can we build an ordered pair $(a, b)$? \par
|
||||
$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par
|
||||
Of course, $(a, b) \neq (b, a)$.
|
||||
%\problem{}
|
||||
%Using only sets, how can we build an ordered pair $(a, b)$? \par
|
||||
%$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par
|
||||
%Of course, $(a, b) \neq (b, a)$.
|
||||
|
||||
\begin{solution}
|
||||
$(a, b) = \{ \{a\}, \{a, b\}\}$
|
||||
\end{solution}
|
||||
%\begin{solution}
|
||||
% $(a, b) = \{ \{a\}, \{a, b\}\}$
|
||||
%\end{solution}
|
||||
|
||||
\vfill
|
||||
%\vfill
|
||||
|
||||
%\problem{}
|
||||
%Let $R$ be the set of all sets that do not contain themselves. \par
|
||||
%Does $R$ exist? \par
|
||||
%\hint{If $R$ exists, do we get a contradiction?}
|
||||
%\vfill
|
||||
|
||||
\problem{}
|
||||
Let $R$ be the set of all sets that do not contain themselves. \par
|
||||
Does $R$ exist? \par
|
||||
\hint{If $R$ exists, do we get a contradiction?}
|
||||
\vfill
|
||||
%\problem{}
|
||||
%Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
|
||||
%Provide a proof or a counterexample.
|
||||
|
||||
%\vfill
|
||||
|
||||
\problem{}
|
||||
Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
|
||||
Provide a proof or a counterexample.
|
||||
%\problem{}
|
||||
%Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par
|
||||
%Provide a proof or a counterexample.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par
|
||||
Provide a proof or a counterexample.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
%\vfill
|
||||
%\pagebreak
|
||||
|
||||
\end{document}
|
Reference in New Issue
Block a user