Post-class edits
This commit is contained in:
@ -22,12 +22,12 @@ $$
|
||||
|
||||
\problem{}
|
||||
Let $x$ be a node in a graph. \par
|
||||
Let $B_x$ be the set of $x$'s neighbors, $w(x, y)$ the weight of the edge between nodes $x$ and $y$, and $W_x$
|
||||
Let $N_x$ be the set of $x$'s neighbors, $w(x, y)$ the weight of the edge between nodes $x$ and $y$, and $W_x$
|
||||
the sum of the weights of all edges connected to $x$.
|
||||
|
||||
We saw earlier that the probability function $P$ satisfies the following sum:
|
||||
$$
|
||||
P(x) = \sum_{b \in B_x} \biggl( P(b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
P(x) = \sum_{b \in N_x} \biggl( P(b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
$$
|
||||
|
||||
\note{This was never explicitly stated, but is noted in \ref{weightedgraph}.}
|
||||
@ -36,7 +36,7 @@ $$
|
||||
|
||||
Use Ohm's and Kirchoff's laws to show that the voltage function $V$ satisfies a similar sum:
|
||||
$$
|
||||
V(x) = \sum_{b \in B_x} \biggl( V(b) \times \frac{C(x, b)}{C_x} \biggr)
|
||||
V(x) = \sum_{b \in N_x} \biggl( V(b) \times \frac{C(x, b)}{C_x} \biggr)
|
||||
$$
|
||||
where $C(x, b)$ is the conductance of edge $(x, b)$ and $C_x$ is the sum of the conductances of all edges connected to $x$.
|
||||
|
||||
@ -44,16 +44,16 @@ where $C(x, b)$ is the conductance of edge $(x, b)$ and $C_x$ is the sum of the
|
||||
\begin{solution}
|
||||
First, we know that
|
||||
$$
|
||||
\sum_{b \in B_x} I(x, b) = 0
|
||||
\sum_{b \in N_x} I(x, b) = 0
|
||||
$$
|
||||
for all nodes $x$. Now, substitute $I(x, b) = \frac{V(x) - V(b)}{R(x, y)}$ and pull out $V(x)$ terms to get
|
||||
$$
|
||||
V(x) \sum_{b \in B_x} \frac{1}{R(x, b)} - \sum_{b \in B_x} \frac{V(b)}{R(x, b)} = 0
|
||||
V(x) \sum_{b \in N_x} \frac{1}{R(x, b)} - \sum_{b \in N_x} \frac{V(b)}{R(x, b)} = 0
|
||||
$$
|
||||
|
||||
Rearranging and replacing $R(x, b)^{-1}$ with $C(x, b)$ and $\sum C(x, b)$ with $C_x$ gives us
|
||||
$$
|
||||
V(x) = \sum_{b \in B_x} V(b) \frac{C(x, b)}{C_x}
|
||||
V(x) = \sum_{b \in N_x} V(b) \frac{C(x, b)}{C_x}
|
||||
$$
|
||||
\end{solution}
|
||||
|
||||
@ -71,7 +71,7 @@ two problems.
|
||||
\problem{}<generaleq>
|
||||
Let $q$ be a solution to the following equations, where $x \neq a, b$.
|
||||
$$
|
||||
q(x) = \sum_{b \in B_x} \biggl( q(b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
q(x) = \sum_{b \in N_x} \biggl( q(b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
$$
|
||||
Show that the maximum and minimum of $q$ are $q(a)$ and $q(b)$ (not necessarily in this order).
|
||||
|
||||
@ -80,7 +80,7 @@ Show that the maximum and minimum of $q$ are $q(a)$ and $q(b)$ (not necessarily
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Since $q(x)$ is a weighted average of all $q(b), ~b \in B_x$, there exist $y, z \in B_x$ satisfying
|
||||
Since $q(x)$ is a weighted average of all $q(b), ~b \in N_x$, there exist $y, z \in N_x$ satisfying
|
||||
$q(y) \leq q(x) \leq q(z)$. Therefore, none of these can be an extreme point.
|
||||
|
||||
\vspace{2mm}
|
||||
@ -104,7 +104,7 @@ and that $p(x) - q(x) = 0$ for every $x$. \note{Note that $p(x) - q(x) = 0 ~ \fo
|
||||
\begin{solution}
|
||||
The equations in \ref{generaleq} for $p$ and $q$ directly imply that
|
||||
$$
|
||||
[p - q](x) = \sum_{b \in B_x} \biggl( [p - q](b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
[p - q](x) = \sum_{b \in N_x} \biggl( [p - q](b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
$$
|
||||
Which are the equations from \ref{generaleq} for $(p - q)$.
|
||||
|
||||
|
Reference in New Issue
Block a user