Tropical typos
This commit is contained in:
@ -5,7 +5,7 @@
|
||||
= Tropical Cubic Polynomials
|
||||
|
||||
#problem()
|
||||
Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \
|
||||
Consider the polynomial $f(x) = x^3 #tp 1x^2 #tp 3x #tp 6$. \
|
||||
- sketch a graph of this polynomial
|
||||
- use this graph to find the roots of $f$
|
||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||
@ -43,7 +43,7 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \
|
||||
#pagebreak() // MARK: page
|
||||
|
||||
#problem()
|
||||
Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \
|
||||
Consider the polynomial $f(x) = x^3 #tp 1x^2 #tp 6x #tp 6$. \
|
||||
- sketch a graph of this polynomial
|
||||
- use this graph to find the roots of $f$
|
||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||
@ -118,10 +118,10 @@ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b
|
||||
#solution([
|
||||
|
||||
$
|
||||
B = min(b, (a+c)/2, (2a+d)/2)
|
||||
B = min(b, (a+c)/2, (2a+d)/3)
|
||||
$
|
||||
$
|
||||
C = min(c, (b+d)/2, (a+2d)/2)
|
||||
C = min(c, (b+d)/2, (a+2d)/3)
|
||||
$
|
||||
])
|
||||
|
||||
|
Reference in New Issue
Block a user