This commit is contained in:
Mark 2024-05-25 10:10:55 -07:00
parent 00463fc2ed
commit 04057b0bf9
Signed by: Mark
GPG Key ID: C6D63995FE72FD80
5 changed files with 247 additions and 58 deletions

View File

@ -9,6 +9,7 @@
% for \coloneqq, a centered := % for \coloneqq, a centered :=
\usepackage{mathtools} \usepackage{mathtools}
\usepackage{units}
\uptitlel{Advanced 2} \uptitlel{Advanced 2}
\uptitler{\smallurl{}} \uptitler{\smallurl{}}

View File

@ -81,13 +81,33 @@ Evaluate the following.
\item $\texttt{F} \lor \texttt{T}$ \item $\texttt{F} \lor \texttt{T}$
\item $\texttt{T} \land \texttt{T}$ \item $\texttt{T} \land \texttt{T}$
\item $(\texttt{T} \land \texttt{F}) \lor \texttt{T}$ \item $(\texttt{T} \land \texttt{F}) \lor \texttt{T}$
\item $(\texttt{T} \land \texttt{F}) \lor \texttt{T}$ \item $(\lnot (\texttt{F} \lor \lnot \texttt{T}) ) \rightarrow \lnot \texttt{T}$
\item $(\lnot (\texttt{F} \lor \lnot \texttt{T}) ) \rightarrow \texttt{T}$
\item $(\texttt{F} \rightarrow \texttt{T}) \rightarrow (\lnot \texttt{F} \lor \lnot \texttt{T})$ \item $(\texttt{F} \rightarrow \texttt{T}) \rightarrow (\lnot \texttt{F} \lor \lnot \texttt{T})$
\end{itemize} \end{itemize}
\begin{solution}
\texttt{F}
\texttt{T}
\texttt{T}
\texttt{T}
\texttt{F}
\texttt{T}
\end{solution}
\vfill \vfill
\pagebreak \pagebreak
\begin{instructornote} \begin{instructornote}
We can also think of $[x \geq 0] \rightarrow b$ as follows: We can also think of $[x \geq 0] \rightarrow b$ as follows:
if $x$ isn't the kind of object we care about, we evaluate true and if $x$ isn't the kind of object we care about, we evaluate true and
@ -117,8 +137,18 @@ Evaluate the following.
\item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$ \item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$
\end{itemize} \end{itemize}
\begin{instructornote}
Note that the last formula is the contrapositive of $A \rightarrow B$.
\end{instructornote}
\begin{solution}
All are true.
\end{solution}
\vfill \vfill
% Show that A -> B ^ B -> A = T iff A = B
\problem{} \problem{}
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
That is, show that these expressions always evaluate to the same value given That is, show that these expressions always evaluate to the same value given

View File

@ -22,7 +22,7 @@ Symbols come in three types:
\item \textit{Function symbols}, which let us navigate between elements of our universe. \par \item \textit{Function symbols}, which let us navigate between elements of our universe. \par
Examples: $+, \times, \sin{x}, \sqrt{x}$ \par Examples: $+, \times, \sin{x}, \sqrt{x}$ \par
\note{In this handout, symbols we usually call \say{operators} are also called functions. \par \note{Note that symbols we usually call \say{operators} are functions under this definition. \par
The only difference between $a + b$ and $+(a, b)$ is notation.} The only difference between $a + b$ and $+(a, b)$ is notation.}
\vspace{2mm} \vspace{2mm}
@ -31,7 +31,7 @@ Symbols come in three types:
\vspace{2mm} \vspace{2mm}
\end{itemize} \end{itemize}
The equality check $=$ is \textbf{not} a relation symbol. It is included in every structure by default. \par The equality check $=$ is \textit{not} a relation symbol. It is included in every structure by default. \par
By definition, $a = b$ is true if and only if $a$ and $b$ are the same element of our universe. By definition, $a = b$ is true if and only if $a$ and $b$ are the same element of our universe.
@ -61,10 +61,15 @@ others, we must define them using the tools this structure offers.
\vspace{2mm} \vspace{2mm}
% NOTE: this is a great example for typesetting.
% The line breaks here are ugly without a centered sentence.
To \say{define} an element of a set, we need to write a sentence that is only true for that element. \par To \say{define} an element of a set, we need to write a sentence that is only true for that element. \par
For example, if we want to define 2 in the structure above, \par If we want to define 2 in the structure above,
we could use the sentence \say{$2$ is the $x$ that satisfies $[1 + 1 = x]$.} \par we could use the following sentence:
This is a valid definition because $2$ is the \textbf{only} element of $\mathbb{Z}$ for which $[1 + 1 = x]$ \begin{center}
\say{$2$ is the $x$ that satisfies $[1 + 1 = x]$.} \par
\end{center}
This is a valid definition because $2$ is the \textit{only} element of $\mathbb{Z}$ for which $[1 + 1 = x]$
evaluates to \texttt{true}. evaluates to \texttt{true}.
@ -81,6 +86,9 @@ Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)$.
Let us formalize what we found in the previous two problems. \par Let us formalize what we found in the previous two problems. \par
\definition{Formulas} \definition{Formulas}
@ -89,31 +97,51 @@ of constants, functions, relations, \par and logical operators.
\vspace{2mm} \vspace{2mm}
You already know what a \say{well-formed} string is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par You already know what a \say{well-formed string} is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par
For the sake of time, I will not provide a formal definition. It isn't particularly interesting. For the sake of time, I will not provide a formal definition --- it isn't particularly interesting.
\vspace{2mm} \vspace{2mm}
As a quick example, the formula $\phi(x) = [1 + 1 = x]$ evaluates to \texttt{true} when $x$ is 2 \par As a quick example, the formula $\psi \coloneqq [\lnot (1 = 1)]$ is always false, \par
and to \texttt{false} otherwise. and $\varphi(x) \coloneqq [1 + 1 = x]$ evaluates to \texttt{true} only when $x$ is 2.
\definition{Free Variables} \definition{Free Variables}
A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par
Formulas with free variables let us define \say{properties} that certain objects have. \par Formulas with free variables let us define \say{properties} that certain objects have.
For example, $x$ is a free variable in the formula above. \par
$\varphi(2)$ is \texttt{true} and $\varphi(-3)$ is \texttt{false}. \par
\vspace{2mm} \vspace{2mm}
This \say{free variable} notation is much like the function notation we are used to: \par For example, consider the two formulas from the previous definition, $\psi$ and $\varphi$:
$\varphi(x) = [x > 0]$ is similar to $f(x) = x + 1$, since the values of $\varphi(x)$ and $f(x)$ depend on $x$. \begin{itemize}
\item $\psi \coloneqq [\lnot (1 = 1)]$ \par
There are no free variables in this formula. \par
In any structure, $\psi$ is always either \texttt{true} or \texttt{false}.
\vspace{2mm}
\item $\varphi(x) \coloneqq [1 + 1 = x]$ \par
This formula has one free variable, labeled $x$. \par
The value of $\varphi(x)$ depends on the $x$ we're talking about: \par
$\varphi(72)$ is false, and $\varphi(2)$ is true.
\end{itemize}
\vspace{2mm}
\note{
This \say{free variable} notation is very similar to the function notation we are used to: \par
The values of both $\varphi(x) \coloneqq [x > 0]$ and $f(x) = x + 1$ depend on $x$.
}
\definition{Definable Elements} \definition{Definable Elements}
Say $S$ is a structure with a universe $U$. \par Let $S$ be a structure over a universe $U$. \par
We say an element $e \in U$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies. We say an element $x \in U$ is \textit{definable in $S$} if we can write a formula $\varphi(x)$ that only $x$ satisfies.
\problem{} \problem{}
@ -121,10 +149,16 @@ Define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$. \
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.} \hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.}
\begin{solution} \begin{solution}
$2$ is the only element in $\mathbb{Z}^+$ that satisfies $\varphi(x) = [x \times x = 4]$. $2$ is the only element in $\mathbb{Z}^+$ that satisfies $\varphi(x) \coloneqq [x \times x = 4]$.
\end{solution} \end{solution}
\vfill \vfill
\pagebreak
\problem{} \problem{}
@ -132,8 +166,10 @@ Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr
Why can't you do it? Why can't you do it?
\begin{solution} \begin{solution}
This isn't possible. We could try $\varphi(x) = [x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \par We could try $\varphi(x) \coloneqq [x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \par
We have no way to distinguish between negative and positive numbers. We have no way to distinguish between negative and positive numbers. \par
\note{This problem is intentionally hand-wavy. We don't have the tools to write a proper proof.}
\begin{instructornote} \begin{instructornote}
Actually, it is. Bonus problem: how? \par Actually, it is. Bonus problem: how? \par
@ -145,12 +181,21 @@ Why can't you do it?
\problem{} \problem{}
What numbers are definable in the structure $\Bigl( \mathbb{R}^+_0 ~\big|~ \{1, 2, \div \} \Bigr)$? Consider the structure $\Bigl( \mathbb{R}^+_0 ~\big|~ \{1, 2, \div \} \Bigr)$
\begin{itemize}
\item Define $2^2$
\item Define $2^n$ for all positive integers $n$
\item Define $2^{-n}$ for all positive integers $n$
\item What other numbers can we define in this structure? \par
\hint{There is at least one more \say{class} of numbers we can define.}
\end{itemize}
\begin{solution} \begin{solution}
We can define powers of two, positive and negative. As far as I've seen, we can define any $2^{\nicefrac{a}{b}}$ for $a, b \in \mathbb{Z}$. \par
For example, $\phi(x) \coloneqq [2 = x \div (1 \div x)]$ defines $\sqrt{2}$.
If you're clever, you can define many more: $\sqrt{2}, \sqrt[3]{2}, ...$.
\end{solution} \end{solution}
\vfill \vfill

View File

@ -5,7 +5,7 @@ We will now add two more: $\forall$ (for all) and $\exists$ (exists).
\definition{} \definition{}
$\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols. \par $\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols. \par
\hint{Quantifiers are aptly named: they tell us \textit{how many} symbols satisfy a certain sentence.} \note{Quantifiers are aptly named: they tell us \textit{how many} symbols satisfy a certain sentence.}
\vspace{2mm} \vspace{2mm}
@ -26,22 +26,28 @@ For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our se
\vspace{4mm} \vspace{4mm}
\problem{} \problem{}
Which of the following are true in $\mathbb{Z}$? \par Which of the following are true in $\mathbb{Z}$? Which are true in $\mathbb{R}^+_0$? \par
Which are true in $\mathbb{R}^+_0$? \par \note{$\mathbb{R}^+_0$ is the set of positive real numbers and zero.}
\hint{$\mathbb{R}^+_0$ is the set of positive real numbers and zero.} \par
\begin{itemize}[itemsep = 1mm] \begin{itemize}[itemsep = 1mm]
\item $\forall x ~ (x \geq 0)$ \item $\forall x ~ (x \geq 0)$
\item $\lnot (\exists x ~ (x = 0))$ \item $\lnot (\exists x ~ (x = 0))$
\item $\forall x ~ [\exists y ~ (y \times y = x)]$ \item $\forall x ~ [\exists y ~ (y \times y = x)]$
\item $\forall xy ~ \exists z ~ (x < z < y)$ \tab
\item $\forall xy ~ \exists z ~ (x < z < y)$ \tab \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$} \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$}
\item $\lnot \exists x ~ ( \forall y ~ (x < y) )$
\item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ %\tab~\tab \note{Solution is below.}
\end{itemize} \end{itemize}
\begin{solution}
\begin{itemize}
\item \say{all $x$ are positive} \tab $\mathbb{R}^+_0$
\item \say{zero doesn't exist} \tab neither
\item \say{square roots exist} \tab $\mathbb{R}^+_0$
\item \say{this set is dense} \tab\null\tab $\mathbb{R}^+_0$
\item \say{there is no minimum} \tab $\mathbb{Z}$
\end{itemize}
\end{solution}
%\begin{examplesolution} %\begin{examplesolution}
% Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par % Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par
% %
@ -60,10 +66,22 @@ Which are true in $\mathbb{R}^+_0$? \par
\vfill \vfill
\pagebreak \pagebreak
\problem{} \problem{}
Does the order of $\forall$ and $\exists$ in a formula matter? \par Does the order of $\forall$ and $\exists$ in a formula matter? \par
What's the difference between $\exists x ~ \forall y ~ (x \leq y)$ and $\forall y ~ \exists x ~ (x \leq y)$? \par What's the difference between $\exists x ~ \forall y ~ (x \leq y)$ and $\forall y ~ \exists x ~ (x \leq y)$? \par
\hint{In $\mathbb{R}^+$, the first is false and the second is true. $\mathbb{R}^+$ does not contain zero.} \hint{
Consider $\mathbb{R}^+$\hspace{-1.3ex},\hspace{0.8ex} the set of positive reals. Zero is not positive. \par
Which of the above formulas is true in $\mathbb{R}^+$\hspace{-1.3ex},\hspace{0.8ex} and which is false?
}
\begin{solution} \begin{solution}
If $\exists x$ is inside $\forall y$, $x$ depends on $y$. We may pick a different value of $x$ for every $y$. \par If $\exists x$ is inside $\forall y$, $x$ depends on $y$. We may pick a different value of $x$ for every $y$. \par
@ -76,6 +94,9 @@ What's the difference between $\exists x ~ \forall y ~ (x \leq y)$ and $\forall
\problem{} \problem{}
Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$ Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
\begin{solution}
$\varphi(x) \coloneqq \bigl[~ \forall y ~ x \times y = x ~\bigr]$
\end{solution}
\vfill \vfill
@ -83,6 +104,10 @@ Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
\problem{} \problem{}
Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$ Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
\begin{solution}
$\varphi(x) \coloneqq \bigl[~ \forall y ~ x \times y = y ~\bigr]$
\end{solution}
\vfill \vfill
\pagebreak \pagebreak
@ -91,6 +116,10 @@ Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
\problem{} \problem{}
Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$ Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
\begin{solution}
$\varphi(x) \coloneqq \bigl[~ (x<0) \land \lnot \exists y ~ (x < y < 0) ~\bigr]$
\end{solution}
\vfill \vfill
%\problem{} %\problem{}
@ -100,10 +129,10 @@ Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
\problem{} \problem{}
Let $\varphi(x)$ be a formula. \par Let $\varphi(x)$ be a formula. \par
Write a formula equivalent to $[~ \forall x ~ \varphi(x) ~]$ using only logical symbols and $\exists$. Write a formula equivalent to $\forall x ~ \varphi(x)$ using only logical symbols and $\exists$.
\begin{solution} \begin{solution}
$[~ \forall x ~ \varphi(x) ~]$ is true if and only if $[~ \lnot \exists x ~ \lnot \varphi(x) ~]$ is true. $\forall x ~ \varphi(x)$ is true if and only if $\lnot \exists x ~ \lnot \varphi(x)$ is true.
\end{solution} \end{solution}
\vfill \vfill

View File

@ -1,10 +1,10 @@
\section{Definable Sets} \section{Definable Sets}
Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets. Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have the tools to define sets.
\definition{Set-Builder Notation} \definition{Set-Builder Notation}
Say we have a sentence $\varphi(x)$. \par Say we have a sentence $\varphi(x)$. \par
The set of all elements that satisfy that sentence can be written as follows: The set of all elements that satisfy that sentence may be written as follows:
\begin{equation*} \begin{equation*}
\{ x ~|~ \varphi(x) \} \{ x ~|~ \varphi(x) \}
\end{equation*} \end{equation*}
@ -20,20 +20,18 @@ $$
\definition{Definable Sets} \definition{Definable Sets}
Let $S$ be a structure with a universe $U$. \par Let $S$ be a structure with a universe $U$. \par
We say a subset $M$ of $U$ is \textit{definable} if we We say a subset $M$ of $U$ is \textit{definable} if we can write a formula \par
can write a formula that is true for some $x$ iff $x \in M$. that is true for some $x$ if and only if $M$ contains $x$.
\vspace{4mm} \vspace{4mm}
For example, consider the structure $\big\langle~ \mathbb{Z} ~\big|~ \{+\} ~\big\rangle$ \par For example, consider the structure $\bigl( \mathbb{Z} ~\big|~ \{+\} \bigr)$. \par
Only even numbers satisfy the formula $\varphi(x) \coloneqq \bigl[\exists y ~ (y + y = x)\bigr]$, \par
Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par
so we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par so we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
Remember---we can only use symbols that are available in our structure! Remember---we can only use symbols that are available in our structure!
\problem{} \problem{}
When is the empty set definable? The empty set is definable in any structure. How?
\begin{solution} \begin{solution}
Always: $\{ x ~|~ \lnot (x = x) \}$ Always: $\{ x ~|~ \lnot (x = x) \}$
\end{solution} \end{solution}
@ -43,18 +41,31 @@ When is the empty set definable?
\problem{} \problem{}
Define $\{0, 1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$ Define $\{0, 1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
\hint{Define 0 and 1 as elements first, and remember that we can use logical symbols.}
\begin{instructornote} \begin{solution}
Here's an interesting fact: $\varphi_0(x) \coloneqq \bigl[~ \lnot \exists y ~ y < x ~\bigr]$ \par
$\varphi_1(x) \coloneqq \bigl[~ (0 < x) ~\land~ \lnot \exists y ~ (x < y < 0) ~\bigr]$
\vspace{2mm}
Our final solution is $\{ x ~|~ \varphi_0(x) \lor \varphi_1(x) \}$.
\note{A finite set of definable elements is always definable. \par
An infinite set of definable elements might not be definable.}
\end{solution}
A finite set of definable elements is always definable. \note{(Why?)} \par
An infinite set of definable elements might not be definable.
\end{instructornote}
\vfill \vfill
\problem{} \problem{}
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$ Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$. \par
\hint{A prime number is an integer that is positive and is only divisible by 1 and itself.}
\begin{solution}
$\psi(x) \coloneqq \bigl[~ \exists y ~ (0<y<x) ~\bigr]$ \tab \note{\say{$x$ is positive and isn't 0 or 1}} \par
$\varphi(x) \coloneqq \bigl[~ (x<0) \land \lnot \exists ab ~ (\psi(a) \land \psi(b) \land a \times b = x) \bigr]$
\end{solution}
\vfill \vfill
@ -65,33 +76,83 @@ Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\
\problem{} \problem{}
Define $\mathbb{R}^+_0$ in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par Define $\mathbb{R}^+_0$ in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par
\begin{solution}
$\varphi(x) \coloneqq \bigl[ \exists y ~ y \times y = x \bigr]$
\end{solution}
\vfill \vfill
\problem{} \problem{}
Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ is true if and only if $a$ divides $b$. \par Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ is only true if $a$ divides $b$. \par
Define the set of prime numbers in $\Bigl( \mathbb{Z}^+ ~\big|~ \{ \bigtriangleup \} \Bigr)$ \par Define the set of prime numbers in $\Bigl( \mathbb{Z}^+ ~\big|~ \{ \bigtriangleup \} \Bigr)$ \par
\begin{solution}
$
\varphi(x) \coloneqq
\bigl[~ \lnot \exists abc ~ \bigl(
(a \bigtriangleup x) \land
(b \bigtriangleup x) \land
(c \bigtriangleup x) \land
\lnot (a = b) \land
\lnot (a = c) \land
\lnot (b = c)
\bigr) ~\bigr]
$
\end{solution}
\vfill \vfill
\theorem{Lagrange's Four Square Theorem} \theorem{Lagrange's Four Square Theorem}
Every natural number may be written as a sum of four integer squares. Every natural number may be written as a sum of four integer squares.
\problem{} \problem{}
Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
\begin{solution}
$\varphi(x) \coloneqq \bigl[~ \exists abcd ~ (a^2 + b^2 + c^2 + d^2 = x) ~\bigr]$,
where $a^2 \coloneqq a \times a$.
\end{solution}
\vfill \vfill
\problem{} \problem{}
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \par Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \par
\hint{We can't formally define a relation yet. Don't worry about that for now. \\ \hint{We can't formally define a relation yet. Don't worry about that for now. \\
You can repharase this question as \say{given $a,b \in \mathbb{Z}$,\\*/ write a sentence that is only true if $a < b$?}} You can repharase this question as \say{given $x,y \in \mathbb{Z}$, write a formula $\varphi(x, y)$ that is only true if $x < y$}}
\begin{solution}
Let $\psi(x)$ be the formula from the previous problem.
\vspace{2mm}
$\varphi(x, y) \coloneqq \bigl[~ \lnot (x=y) \land \exists d ~ \bigl(\psi(d) \land (x + d = y)\bigr) ~\bigr]$
\end{solution}
\vfill \vfill
\pagebreak \pagebreak
\problem{} \problem{}
Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
The relation $a \diamond b$ holds if $| a - b | = 1$ The relation $a \diamond b$ holds if $| a - b | = 1$
@ -99,9 +160,18 @@ The relation $a \diamond b$ holds if $| a - b | = 1$
\problempart{} \problempart{}
Define $\{-1, 1\}$ in $S$. Define $\{-1, 1\}$ in $S$.
\begin{solution}
$\varphi(x) \coloneqq \bigl[ 0 \diamond x \bigr]$
\end{solution}
\problempart{} \problempart{}
Define $\{-2, 2\}$ in $S$. Define $\{-2, 2\}$ in $S$.
\begin{solution}
$\varphi(x) \coloneqq \bigl[~ \forall a ~ (0 \diamond x \rightarrow a \diamond x) \land \lnot (x = 0) ~\bigr]$
\end{solution}
\vfill \vfill
\problem{} \problem{}
@ -110,20 +180,34 @@ Let $S$ be the structure $( \mathcal{P} ~|~ \{\subseteq\})$ \par
\problempart{} \problempart{}
Show that the empty set is definable in $S$. \par Show that the empty set is definable in $S$. \par
\hint{Defining $\{\}$ with $\{x ~|~ x \neq x\}$ is \textbf{not} what we need here. \\ \hint{Defining $\{\}$ with $\{x ~|~ \lnot x = x\}$ is \textbf{not} what we need here. \\
We need $\varnothing \in \mathcal{P}$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.} We need $\varnothing \in \mathcal{P}$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.}
\begin{solution}
$\varphi(x) \coloneqq \bigl[~ \forall y ~ x \subseteq y ~\bigr]$ \par
Note that we can use the same property to define 0 in $( \mathbb{Z} ~|~ \{\leq\})$
\end{solution}
\vfill \vfill
\problempart{} \problempart{}
Let $x \Bumpeq y$ be a relation on $\mathcal{P}$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par Let $x \Bumpeq y$ be a relation on $\mathcal{P}$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
Show that $\Bumpeq$ is definable in $S$. Show that $\Bumpeq$ is definable in $S$.
\begin{solution}
Let $\psi(x)$ be the formula from the previous problem.
\vspace{2mm}
$\varphi(x, y) \coloneqq \bigl[~ \exists x ~ (a \subseteq x) \land (a \subseteq y) \land \lnot \psi(a) ~\bigr]$
\end{solution}
\vfill \vfill
\problempart{} \problempart{}
Let $f$ be the function on $\mathcal{P}$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of $x$. \par Let $f$ be the function on $\mathcal{P}$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of $x$. \par
Show that $f$ is definable in $S$. Show that $f$ is definable in $S$. \par
\hint{You can define a function by writing a formula $\varphi(x, y)$ that is only true when $y = f(x)$.}
\vfill \vfill
\pagebreak \pagebreak