Edits
This commit is contained in:
@ -81,13 +81,33 @@ Evaluate the following.
|
||||
\item $\texttt{F} \lor \texttt{T}$
|
||||
\item $\texttt{T} \land \texttt{T}$
|
||||
\item $(\texttt{T} \land \texttt{F}) \lor \texttt{T}$
|
||||
\item $(\texttt{T} \land \texttt{F}) \lor \texttt{T}$
|
||||
\item $(\lnot (\texttt{F} \lor \lnot \texttt{T}) ) \rightarrow \texttt{T}$
|
||||
\item $(\lnot (\texttt{F} \lor \lnot \texttt{T}) ) \rightarrow \lnot \texttt{T}$
|
||||
\item $(\texttt{F} \rightarrow \texttt{T}) \rightarrow (\lnot \texttt{F} \lor \lnot \texttt{T})$
|
||||
\end{itemize}
|
||||
|
||||
\begin{solution}
|
||||
\texttt{F}
|
||||
\texttt{T}
|
||||
\texttt{T}
|
||||
\texttt{T}
|
||||
\texttt{F}
|
||||
\texttt{T}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{instructornote}
|
||||
We can also think of $[x \geq 0] \rightarrow b$ as follows:
|
||||
if $x$ isn't the kind of object we care about, we evaluate true and
|
||||
@ -117,8 +137,18 @@ Evaluate the following.
|
||||
\item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$
|
||||
\end{itemize}
|
||||
|
||||
\begin{instructornote}
|
||||
Note that the last formula is the contrapositive of $A \rightarrow B$.
|
||||
\end{instructornote}
|
||||
|
||||
\begin{solution}
|
||||
All are true.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
% Show that A -> B ^ B -> A = T iff A = B
|
||||
|
||||
\problem{}
|
||||
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
||||
That is, show that these expressions always evaluate to the same value given
|
||||
|
Reference in New Issue
Block a user