From 00ba533b3fb76129dada137d01471d474dabc902 Mon Sep 17 00:00:00 2001 From: Mark Date: Thu, 10 Oct 2024 12:44:39 -0700 Subject: [PATCH] Added masses draft --- Advanced/COM/img/arc.png | Bin 0 -> 23745 bytes Advanced/COM/img/pappus_1.png | Bin 0 -> 18646 bytes Advanced/COM/img/soda.png | Bin 0 -> 10971 bytes Advanced/COM/img/soda_filled.png | Bin 0 -> 10883 bytes Advanced/COM/main.tex | 32 ++++++ Advanced/COM/parts/0 balance.tex | 160 ++++++++++++++++++++++++++++ Advanced/COM/parts/1 continuous.tex | 64 +++++++++++ Advanced/COM/parts/2 pappus.tex | 57 ++++++++++ 8 files changed, 313 insertions(+) create mode 100644 Advanced/COM/img/arc.png create mode 100644 Advanced/COM/img/pappus_1.png create mode 100644 Advanced/COM/img/soda.png create mode 100644 Advanced/COM/img/soda_filled.png create mode 100755 Advanced/COM/main.tex create mode 100644 Advanced/COM/parts/0 balance.tex create mode 100644 Advanced/COM/parts/1 continuous.tex create mode 100644 Advanced/COM/parts/2 pappus.tex diff --git a/Advanced/COM/img/arc.png b/Advanced/COM/img/arc.png new file mode 100644 index 0000000000000000000000000000000000000000..a732cbb9d5d2dd4b25d4ac9fcb6e814b51b6d2bf GIT binary patch literal 23745 zcmeIac{o=4+dh0Jq^PKj$yh>WGKI{fl(CSKdB{9x2#L&6$xxYzRFbizBtwQw4N7K- z5)nz6-gDXeI~~90Io{(rj`#Qe_3UHYoBLk(XRY;F*Kl6vbzXO*&QXocn^-oHNTkh& zG*$ITq;;wIS*4=HE6xXZM&W-y{0xjd^~`-ZT-{x4>>aH+JkPmWb6ES@+mJ}UJzly> z+g@-`Jz0!WSZAyj80T~)WhJ9sn4f3AcwbC#p)q;y$~pF_&YG}O5qyW~IMsMFUEgxN zt|>WrEc0WWp5Tvt-{W2=AK&`(0sH$p@6q2oaxD%mJvkU=Gk7x3ch{RUOS28n!p8y_ zAGS_kKUZ?+2$h_#%VJVr(v{bGJv^mcX8V*c8)cpMzhEV!mqcB1iKlDcne$4yfAk-c z$oFZEGDS9Fm6PkrW*j#DF)9lU(ce&d!d_?>yZ+bMQrXWJ`IqNM=A7z|r=3)fn#dTs zInKUxeadEXirP5R?}AOE(Qj-;sJ)7c&LI_*f80Ip`DS2(yygo<)_OC2wF3GL2O=V@ z@{fA!(lwfdaT!pRDHm?xNjk4|HGFq{y{@aE^g^+bm#f>mx6ch}$qy>t+;wxushqmi zJz)%@Y^=XV`l=iI4k+3gB-?n^uhXu08Dm!(ltBkAha_wJhfp!)_UKQSwP z?_3V;OdV2x`}hs_nn6KYlUcvBlOuEMUh14E*f}^z%OtEf|G2%%|A7DEuOo%e*p;K* zukPGkkwYSFv9^aX8fhPqwRCY3GPiQEuom)la)p(WNOA{#UCk}eT6=O>Slik=%X59N zdd9_JZza!lV!yVCwyTP@oxP@?yS2XGQ3FfAvz9VeTn804$@$7+0Viuua}Hl8M`sUN zUwN*zb!G88@v<-%$J!yDXXUw!v~@UCT->cWB!nb{LZz*# zy#)S}=d$zkbd?nr_VMu%@(~wuakmu~m64GV77-H`6BEP{f*$9bJOA(JvR!QfOJeQczUyHB3qT^`pY2)JV zB+sR7Zpm>>|6j)%*gIM4dzurwCMqQ+C9_{bL{wT*3O_RcI_S8yy9W%ESX5L*NL+gD z9V<&&bu4KPL$h}>x3v~_b+%o5gLsUxI`+QSjz+3j-TAMNN{Ie-J^y;w_}|{$FDknB zS>l<>Vkhua%n6^sRjs{_jgVDww>I~5aW`;rag^sGZi|DsoPWNp4cE0Y_cT{E_q4{9 ziikud+}cZjd9S{; z+h2eE^{1o#n%i=4tT~{px#eHC;9>4e zrMZQSh?Ss>IqXrwTueq#TH3-=P~3XIwYas2m86KcoUct84 z_KJh|ugA~#pNIR{Srg9|J0>V9BKWTzlm2_hg#W%{VIn~NM9@g$E zE>47J{o7V4IsX0EKemd9ZnBQp26&91m9>qzm!l__g1)7@HB83N#ZzwWbdL7_e)4}T zA}9P`o$0Sn{98oDNB?>aks5(t_@9yguQiDf`+xJFzm4Jl<|#Nh{`VyRqy7Eg?fT#C z`XBAU|LEZVwXXl&uK&>v{ErU)U+en+Y`Zr7t9G<@1`P8-W%y~Z2=zaS(&Dg&>RNqC z`mItGgx@y0Y8rcxNYvYjpLL|vn@o6dgXbY_wGHE&)>Cihp%A&Oi0H`Pl?Apd2ilq26R0k51V=>VUmPzcS5>Xc;N;?>+)PJD7aATB!6fnbD;6EJ|9VB0 zhJ}mkpRYtHsi>~Kvi31iyNHOjSN^%s+AIHD=s%YJZx&ix`kxCCC;M-f{{Q0|*X{#X zl;GXc-hQbfN$StfiAIadSF{Ay(a~Spyi@YbMEN~Za9y3Mk%`Ge-a5L?boBA1r4kE& z{_wL6RJw(#apIoo)7gWT=-Sf{o{)QbZk8un8F$6c_G_x|#gEaJ#2)FawS#uDv$MY( zb^A(|=-`zVYz<{Ti z?;6J@A7$AXr^J=QUN%cHghZ$;}-cqHx&-bI+p z={C~9+pH1x=#k8oD_4wE<6yyWZpeD^lPf9CettFd<%{v4hp^exn3@{Jddrj};bZOT zFKTNqgjvBS3S@n!IaXE{T}U;;&z8teoaiP?U+p#v;-lC+{Z)E%sCvbW6^UzG;;mcv zq;H+8310V|hMDxBqT+=8$X_>*KiZPS&BH^vEt34;%0jk!OTf}hqlk!z4s$0h9++m+ z)xF0a*mZJ|YOrc7Z13!RNY?G!KTIjt_NM+*)76Buv@MaU7mQ16=p8;#Zf4{(jtk=w_6%Jy}2b?tESnd%KmNn!rvF5}RB z|DN}UlNHWGy^lPM9-LXXg;hGEi=Blf3X2=uG1w?6DS26Qw?O5Vp;nSA`QY1)B$s|p z{VzKU4ESXa%-+aOj){r!S)q}amzQvO6H#wNgc*8vwrtKUi=?YpL-(J3H|;1+R>KD~ zO5U@3H*pJ<0l&qp#F%}Vk}D@-BBHciT}7}hm*9YE9}~DWI_{m6V$itc*3C>uAMG{q zE)zdmoa;#{m$s-mItow|4yxPPSMATZnMFd!zn#U_)|Pz3hHR}wegOsz>_*s$XXgV2 zPCYho3Q|=i=h05BQ+88TQJp*A+t)|8V@FPTP-EOKCOKab>Uv_SAuB7Z!HJ@0>N+~K z0)m2X6P=ITDps~bKJ|9nnuRP z#lEbav~=rIgvIIT>2u3hUtL~DQc+R))>p;Y(9n?8p44PD{o@DOvk5Uc0WAXqWfG6j zc<-Z80XB~_s_@#kl^ znYpDUchBCW7E#af4&|b&xOIcJz=N~?Hx&X+X5J$fZP?0I*Hd;jv#7`{-zz0G)dH67 z;4;L@%p8fhP&`h*!{-)V0&mI@%DsE{$_4(}!N$h+{;}7De>$h6Z5wM@_j}FV+f1JZ zFuzLOZ#ly(p_;SrXqsGPem?J!Te60eb~z$He*EajQlmDl^42aL=A&kuIhLQFPo^PH7_@x> zGLD2xKWl}{!12;Uxq1SppD+!aUvw&FofeLv-*-I!R+BM*;xHV=?)?K!DOMP|!Rh4W z7bjF2cic*{>dTAU|dO;Nj+8ubnEPgk3KV z_~35vJHzqV9wM9Fym^x&sYPvZJsH_Fo}I(F>DfkJm=g#{#hwqDLZQ>Od-+uPpUEPmG+BmPcO>1y=cD9|FmewX*OG7LXznlO?LhzTx za9yNPnSoH^+_%~yD=Vw(@*gjRrO2H(u*3XL$I=zlV9X*;JrcR0U;F#}A1v3E_b#zT zGYYH2M${Ia`=3N2rFd9+AOctqwWf&M4Lq$LE=H~(BO~j$eJtJmSC!+(^3A7DpUw*8 z;o+(D9}`k2UAnyU7I6aY$)2(o_|Q7i)YKGk5pNRi@IPMIIa|Kie%t!zz6_ zh-s7*-$|Rees%eK(9ow(7q{;{%CUPlIr3fM^s^EKcLsd6JP0oRvaRhi`v#<m;+|O_N*RMK8X&7sk-$Hmw>C19rl+SB0hiWxZBuWxI^tLY<#l1RxSdkYXGWV7Ma0Cqnpk?D z2JYOlWlPrW1BY|%m;f>u}ou~hv09@_<3S?y-o?@*^~&xvHjuac0EVAoU1cf9Cy?DNnK+_Tm^(OKbP zVH9~sQnJcdFR`CLlR)60R1PYmNA7!4C7q&hT_j&GR*QsHE{5Brfxut8T3@|VTin8~ z5VP;Z{Rf%=fLhwxY8B3XBG%12@bvk6G~!qbl9{g7G4I@I`R=Z(}f6-so8I0UTMHXjneN6Gb1k7ee|edYD=;vyHBJ7c)9M8ZYGMO*>*ob#m=RsW0ZCcm2{uYvH4n^R zoUygt+v77_xA9_l_(R-fR@9gA&TLnQZx;ap*O8u7S0~)O*;>1!1PPbkm$D~IP0sM9 zl8V7|D{E`>uAD>T{nZE34hG$~D>_*r^!>`~u$%(|jqJF_>$vC5DgIB)=od3}1| zJae>O?Zc81^Rs88k&NDMm5wAYE-t?L;Ze+?v9?~Sd-;+I7R;bX@dv3W+j;ryj$xGT!7Y%$10q@pb={(gQB zMNEc&&yFpOXUAW@dNsSt*4{qy(pL7`nwsD+pmEIu_l!#@@87>4b$MNI`uRVRVVztI z3=Grr^9+-Rj~uB(9{FqK*BzNE#g>g*awT0{T<+pCi1*eZr7v$C@af1x3_im^2CJ|y!u=756`}luzwnN( zEkUcxQgU)~s*99cSYMv9gJDlzOG$}rPTc2FKI&fE*{SOm?U=h&E|NT+{h&HRqH&I1 zozLdZRcb0KMLoSMc4mqEhD>6kFM%=DK2j*vxI9~KAS1T;F#x%UMI9BZLI9Jz-&{@5 z>Y^D#?vr>$Gn=e(FQ=TGocy`BcMPewvMZ?OY9$)+Vl%b+XGR){koMxz*7YQ~TWj

zY+qNxOU*KlxI$lsv;JdUSIy^E$$Ic$#7|%WetW8V4Zl|OpY1*N? zZe@AVZT_1vPEym{ylM7xn@Zx=J9clsU%7QFHbvalqCSdVYx3U7iiUEhkJB@a>>i;> z9>2a1obb0Sg%ynyJzKFz(27>f2?1=OBB`!Es;Z*Cz(K{=#HV~|%PxaI$8O2ydOeFj z!m}OTo$DLBEmAf4V9?XcNlA^dr$T^{@|UY(V`HsDv^M(ON>F!nbaWkS+eLtfYX4uy zzk2xi5E!5GybLWKKt=OIdwYA6UyF#u>w(89Nbh@kxTK|-N^IN14fsbJ?khILFlU#$ zEdTi_K#TRtH_^}-q>fAs*GEfxj?*#-pN@gCXM0cfP*G9o%xS2rXTf4keph|_P_p4v zm3LTiv8a?I#kCtZqGi3la)^rR<`x~lXW~0IPWR088d;jRQkeI|JHh(Z*qE5;c^W0CKJ$o{3UZrLQuBW6Kq`X%%_w%PHo^&l zRQ=Yv8ufK`8OTssfoW-JD1EmQ(ZcD@h-@_JN020giYd? z?3E=Y;tg@T3ilVypfn3Z>f^E^4I=bJ#K(_OzR`vKF*+r+jJ|*5v6q^-2=}E0x5V;2 zhp*ecniD9}IR4?ohp6&Ql}n&EE_64HiyS+4tZZ)p&_pbSMaN~y4cdSMZ`-b&WKgGJ zUk5iN73Iwh6kBe9y-^}-I?L^{v9h`dGmV}<^~jw9wr7hZl(U&lAt2&_&lGRj?}Y`s zw`cGEP@@0V`)E7Bk_HMI#F^I38YGgiuy9$R%fS1%D8^%y9I+JSW`QC4xAf1)@aDLudTv)hBj5-CCl{wtGmpA8kg+nBH zDCOpDlT|+7*_2gOjFBM{_dGJaFIL@pnNvk;+3Tg17_#jK1iu&8`1G%}32^%*U0AVM zT^QNQ01m*K5AXvn8Py1v68d?PC0*8Q6Uw9oR2J)=$d;MhI9kXv*y(u(HG~Zj*sDAnVnuSFzoSI++C@1Lwy(xlJFrhY|Z) zPOhD<5UBNYY+_X8=HS@aB^0@CCd~Y$QhP53enf&b&e&E{(x%CcWcvFzSU%K< z7cX5(`r6*!(xOs${ND7^Zx14yz`}cZ4Xj{~4DwHHEiF-su{}^^?bI<|9F7*&TDCoo z8W@l91<(w$n1MxhYGtK#T3|y)=0mQe7EUTMa-|w1+{53-OrQADojZ3fEAZXBcTZ~5 zqrx5=laY9jN`eeVXEr;^zX6s7wzrw6q(!J;z3Ev%0|ualJmWc+tN|PE$k|_ z>m)n4x+G2_iV$i4c>!vbJz9N2gTNvjJUroR$I;Q!X1KeD#KvysKXJcxSSN*iGl^B! zGlGI&U2Y<#`3P!c774oy&!8Jhp_D^}Wfv6iQLFCJq9r#vd6JuxQz^Fy?jh~*nI;;D zEzzgEyxi!a)kady`}a(UJoN~ExK-JKhkLdW`K0taZg4?r)QllgNrnD-&Y`OWq$3!I z_Yceks1o_Ts@ky&P5OI{Gln;LP040=T~1Fg+V3;8+fQ)cK5E2w{m0xBXW>qb4Y50o zkudY+jGmpBCqNc5FGFZ)6zXVM&vA~PU%1?2MH-ea@1~}vabQnWFR|0pu18YD!qhnL zy)HX@qH`WVfvAH7K(Ca(g}ZjbroIh4GwUq(|K%)q?gwG{K-`RFfvj&u>@*L931QnM z>#6hD+8OYes73&+N)&Sp5fnB6RdhZ@rM`An^<4+N4P@0mbayiXdI#UTCm5|_0-$>| zYm%t&qr|nZbX)q zpjH`8tE#H9tKy)l^!&07p)0csxQ-Gac@Vc8RgU<7=EtWdfh~#tuz%1yS%J7c+YsCw z%N91d{8DOj5M7mQZo8a%O3mH!dkam<_)SlpVwRv`;Xe#pyqKH2Cnh$w*#0%oxBlv# zZ(Hvaix`-fI`^5B%1cWdeR+Ba=iFui)&i6p7>%LAqNf&0nzk2s5bnG0pRy!QWeWCC z|6}(Z!+mcGPsFQn-P*)LBB&wadWRplji|qWTk!%Z&6uXEN!K4~Z|(FO`S|#lM9z@Z z<5(k6h{Q09Q^vE&TbOH(mD=?ym&)(neX-uWLr3?PygviHx&iw`?}QK#5f^9Ura2~Y zw*N?}ypYfqFu7|tY$WB}t61ediIg|8THTqtU&Y9X3AnC-EMY3v&ZJc5V`HB!Zu>&` z=A9OG5p+?FM7k0(t*lwUl2d}h`OKL!96gLIEX`!1cKN)>s1$#tJ9Bt&M|ZcauBPpm ziHX8$S8+MHn-u(H{kt!ov9hXTc8KgB{Q8w&_L(tG7!7KrzyrDK==noAoQ#Z&YgW!B zDw+V7@3;Y0V{l?38hOJ4`(RY045c zGz`j7^X@XG?Uy6cd=2{-C|3It0; z^P0i}iLTeL>Ejo{%%KJW$q`r2*%f^C>Q%b~!d5mN9jj*tp32*_Ca>e>=3ZJ^{7ywf za}i}HwMq`BhK5GxJR-@=^>typ>ByDNF!Seu+?Dg2qe8~97LC~S1-m`ol^bnmW?*ow zhl4B5j{jzIGE-fBedIiLOWZ0V>YVC&*I&$`>X#h*9@7g62{B37(PAHrXtOK~s=S@b zs&2USRzAn3^OwJQV?e_qL51>P6QCS?tZ2|m07H0wvW&EJMESrYk4rEK15?7KuU_2_ zgp_M1E+%#X5j0xGp!M72B(p?)u*a=LZrBNvl=IE5%}ucOVvn(-Wj++Uv$FJmJ$(#5 zkX$KPmCGC{wBXFn!^gIMEO*j3Ee1>FY5LeRl2gT?S?OwGV%WlhFGB=(YE;vQ56oZ* zLJ>s3I~vnwZOd`){xG5YN`pPHj>|r{yVI@!?9uoax0*u+*NJil1WpgCNm5{OV&$ukxkCG2Djdv{^W_=!tdXi+BYN##*(PCT3e6c z)@cHNH0{lr{3>*fhcfn^-}KKcz6eJ@*`&&^M3=`%7=5$CfgOx3!=pJ2O=_FrXC#)2wF4BPG)IOeIi6L`;m;OIrJNUW_Vx_w3>1<_?9C zUb|{;ovZa8=ms3>44M~1H6iQsb+aj95cNvygS)%z{xCOgyH*XS4Om_NB^|UPhhWrr zf!3Z5rdSquEKQDY+GOW&MBW>D-)RzvhZ7DhZEfn``>Ts>+u4wbwi7;^8BwZv&!lV< z4Y~(*v540-*k>?AU~eyH1>#`oz&{eC!THILXt{7-xq8)Dgi8=xO9cQ+2|C|DH#gUO zyd#rI){__f4T%KeCu();F4-Ng^R)Hl4uZE0T$~Rx6|$X)C=D=pVJShAD#pml8iUjY zV6sbVATA&<(A>fz%We_boT%UHM}W~S5Y+`Z60YZ;sw%hhS5_vAev!d<60uJIvEO@K zB8bSWS?=W@EyCk(3zLRt5U|}Arp*}=G^s)BMwZVe^M~fOYTuNm>wE0Ao^<4f=N6Z3hQ_cMlI^4odANl+N33-nu1f-<4x=at!^RYg6CG zMn*zm#|$^}WAZ8g2

QEsri`4M z!vfZS(-vyL+J7_cGwSk%vGkzIbrD*Np?b%TIlULL>(@T(vi*2QTY4D5nXgXaq z6}kj;bNBAuGuGA=1qLR0Mc)B(1QXL=-#*5koSMo7o)2+{Xz&2+oXYq5G&(wj#Vfrg z7^ViE#e+295*FT?mzRgu&z7DFmw4c_7w_LEf2ZQw-`d)GIW@I8gKv{kbk6SERKPde zQJ#^L99F?0XJX@&H8nLOtFHsKW}@|?tf!}!(rvvkJrp&7B6KRuL{dQDh#hLqke}on z=zng~h-agZ(7gHhSEtWFVB_$U(BtIV-rnVd-@gkdr=;*XDQ?}m)qG{?cP%`OA}A;* z^F+~Utz{6pM97F<{)y%n`vsH%B*k&GLsGhJS67y!1|GSOHiJhgZ)o}Qz%6!kw$;I8CF z=BG`54c)kYodVV1#(xwv{8X0yrmah zy@JZ5#fP%xRkL>Yo6S9(G+obV#<6#=M(5|r$yhW}?ViM~TTjU=zXE_c zgAB~|EDsdv8L-c!U{EI`zy+?Zt{tgYC0TdvqF;@FN_VeQ4414WWw2e`u7e|&nTj+B z_Vi^-%Seits>{M)=vLK_W={i}hM!E#O?Rz?xVgElH5q{%oX}iWRa8{We5YS@T0XZC zHja+jxuWjRLqj1bG70)6-}KSL<4(N5;PtEQ;D_3Xn$8l|#d6OdHtLcd`SMG9WPjF_ z_|Pli)*K2YZYr|yt?c*Rh5i7-51cEyUSW98#4uM-QgZ%QOYZI4+(4h%TRolhZXexM zzlsjEn7BA~!1y}E56#i{XNCuH_>u~sh>x&<$?`pRg^+8dN(R6q>v-^ z$Gs4|63byXWJv(jA!r!^4(54AkNy~({ICHIv?*W(I9=lOFR;e>bMI?w$qW_p^*(i{ zUccUOAaq-3_zo>6n_zfc>rEN`f>)@j4qq4G>-w{8`*y<~)b_l8dJ!-e78fl+fkrW3 z2ALFv408Q9&H7X^@G`$e(B3_sIj|%3O;=M>K}RM#6H^3SnUj}SQ`BO=lvJZ_dLSi~ z29;G+`_filA3MmYpm2J|xA_|11K2`ULewXq-uIPm+*AG4)W~~8*$&Sz?-;k}fQ#$^ zZ=vOccB$oko= z9r!`t5c#q%fgtyxHlPLZCU~-Z5C$skHcamQy+0O>iXlX(WKqlTF3EjuHyRS0KRh`n z4!mCAX;~8-OhWsD76do%yI)eFpXIML6gYwSihAudu*67DZ}`c}&(H79-J+n?75?@c z(ry-E$qs5lN&A-B;E?s@Q{c4t-kn8Gva+#pC^c174DJd`KmFp#wfo&NK`T$X&TiSf znI27!qBoM~mweL}52?BT{A$=aQFD5Ac6N5(yY#WKvAushzP`KH5}UcXyAy1Uw)F@~ zmp|3-?9I(HAGSqq-+M>yJMxJ#ur>ur8IbHE;(21r=ET(0J9AYEzS9{-?{1`|6nJ)i zLt2qAafaP!71_SL%&C0-{L|)HN*bmN-!_6IxzP0fePyrnR(^kr65l7k+ksTUN(;_p z6ql5YG<1Yd*tMm}7j}If9X0&)vk$xtAuzEAaeiOxMnVD|gP;ldzJ2>zZyjI+IXvqA z>GwQMu?u?%-yP&hzPJK{E*NQy4;m8#T~vpfmp*>iu3g3Fm;DeO6UV&AJCtTt(LCh6 z^=@ipMBlk$Lt=Hr1Rcfv?Yz9F-DO?|0a|

h3T4&JMboR|kIXIcp)s-V%_q@!-LO zMEezwwhpQYJt3(#P%&Jar)Ts$YpmU5CAKvEVr!IQ{{!>Taku+Y@`nTR+;3bUj8=<& zrsNH9gxW_zLBYhSG8F?OizMlYz)pdN7c>HoB{#hK2u5o5v@P>wU)71+R}Br6V808r z789~HTt^xP6rXu>MO0Z{pRhxi^o7+%?aZ+er#@0NaM_v=x$0KY8YeKTx zzYjb+2wM5>T*$9R_Mi-Oo>@+r7YUxev}gKj>-}G4VB71j9cW1s)Qoi6*IHpe;W489%=o%>1~ubLZ_cZ@agBB0bN0qX_=YkkKSuu;24C(L^Xbm^S9%I zV+a13Qv%_D{!Xz){ifI?G!|D2#i9bbg`R)`;gk3F@K6Eqw$PSsp^E~HfSc&LL{Uqg zGBwru^uny~rcKx_g=i&xt^Twhs``c9caNv+y$6aoS^Q*)aXJD0z?wi+#o%jLT^<=1 zcbxU`x?rFNMtk|l$Veh@KotU6K`1iEj;}`TXbvT^Jv;j~BS?RRXyhdJod5G>@6(C= z_aAzCt}lGsMw6Pg@9HUAwMSRbB|JVSN%m}cey2jIfT=6}4zaI!#e9cd;&y`zBkkK) zs9eM?Bg2e(p$@nQa5sby>*x&p`7t}2*cPxpIPbnTwW-aAAJ$rCG=9IPVo}J?oYENG z7MgdHLR+`Zi5+T<<{gsU8gT;e`b3^Tf1VGP^ZdflC5v0bqk+4mT@`0m)4)0S{YHV~ zIoU&xaAo)5;hvSH*><0PN{A#FsTqapO6pEjP+xAc(z@-#vU4Y+^o)(N@`YySM^f<# zbfR`l5_|4E5Z~+4_t?g|nU&}= z_>CxiO-)S)KYz{>OO20NG52J;prJ;HW=^|m? zXW6PNK7F!!-raq|^GaXE>Y?4+GOb&#*W#gvA*)dDJAPLurc3{de*fLmSr@xv}`AU*uwNh+C|3MK~_`gR%+jEtVX+id$xq56v{AAZibE%=@Rx= zy4Ys`4v9scK7Gp1J`GAm@W-E2DHkCUEtrM$0vMT}1I&eC9b>ZaGr0#fL6ywbQoH zoUBtEVNTQ6(|a>d->6NsPnJ@flbMBui-Uu7vfNQOb@?2g0D7o83EewcSnllLXAhjC z!)+M3cG>Id>Q2wj>e~;1K=Q zo0yuif@sO|+!_4phE%p%G=qT1mr}%a=zCOitEJnf#Uv#g2%!c@sLt7efS{-M{CX)7EkJ0Nmh08BDm;7lZYZ&NrHlq&LSkaB?-a_)H9|I)YFJ7GMY9U9OBuf% zsHncAdEIZOAiNdH@!dlD z?c25q7e2q(dhk;NXhuh`Z|~^<%$THIIWB~TCjKGPK0Nx?ZISJfv>CD#mgt8{oIVZJ z9k{T{pj8F*Mj}>Mem&!FPte@WBp~3p-`f2~Y%82xL?Feke@GKh`T+eoq@m)3 z@*A8}F-P52o`j5Z2LvR%zP{m0lmyO7PHP6q@5|`iqk*a~2U%A*dhFvBB3!4; z&z#BVVqjxCJ^m8{w2}8_jn{fmHBi&j0#as8q9fU>LzDU=vw4FdEwsoAfq!^=ASEFL zXG@?^1!%wQ29Fm2j$6xV!xmO(AMG;Vd5kvG@7}YAugqT7a<=Ni=gDpj8kT!D5S=4B zkASNSSLIqa{Z%%&U12e%p7Yio$?pXB^CoQ_&u7>?zf(Ou%u2+rIoJMm-q6zTS>T`s z7;h&Y1VfnTJEZiEM;^9`bj@HsC1lqNqM1c#XdJF;<=QQuI~!{j%0WfLLaAN<8ci)# zHTA>~0%fWuvqL$zFA+p_eZ5*iAOw!CZf?(k7v2c%+`c_j_~`-}Xa=px^q`eSq(a?T*Vs6MI75giKDj@#kcUE;puHhxGR;p9`ZaY59nwy_qg*>| zF6~V$XiZA7d-sGHTrV9H6M?93&keu~qG#U;Kwr%*F0P+#4RVpt^UyGfWN3=J--X(B zvOf$h2Vg1p7p|)M#ROFf=u09tnTEjQVAhP7x;7Go0qpVcPun|H-i`0xUFX!Nl2g|| zipT$=ZZ4=I=2dg^1yC@6524?_IWk1#lS2!5vb0)6{LuE$yd_6odHK7it69*h)00)$ zPD>lyX%=r25}_qZ6kW!w*mZ)bg=UR^DxDZKkU8&R#FS-mJs}|koTi(qK8~^rjTjW{jnKy^brL zg6vpHNlAcQmrhMxJ*xcV$&)WyTVv4r7%vCx^Y!z~0vv=ya)WRp7ynbbShSkZ1K@;g z3(rA?mYk@W!HMn#gG5{yQ|Fps-n^p&{hl-S_65EHpI*{Q*mseGQMGo9kRU`jyZ7$( zP{kr%Jt+0i2hXjdYN)R_pXz-iuqAR_x zdQYa>Re^pk%H$(U>o*NSW&-b&jY>WLbhWI*ySq(UwAC6Nm7sh06Ca}S?spQA$A~=3 zViOC$+?4EVH+WYK0{;HTmYfMfgjfh}$OJdhaf^tId_Fz&A|W+3s_;aS1*(+=$lQ&Y zy6h?X9$h8cM)X}<4=x1*?2wA4>icsJZD*BnzZk|z8A}EAOPd>7lC?b#%-0k8o%#_V zQAD@($Q;9tWOW(m4&%3s+l}!@C^yq)tE!(cTgK?M8i3`yj1K2K*r>lWb zgpfw)#Ziwb@}LH?@1PzznvN4s&NL_a1$x#y`bx4&;BKdF!Q0U zVYukog+|+(`TZ{aH;I1h;vHL?{9S+nJ$uM@waM zVopW|NBz34n>Sfw*yLIIPxrqJNNF0@3Cnb@VAde|?G)$}Gy-A3rtjE&eC)K(q|`A4 zlruvF|3z`zwuthNA3kIPBCVa&1O+;AYtjb}?CSvrqD0NbaH+W(ZNf687oDw(BgVEl z#du>Fr9aUV0@%DnLCx@h*MRfl#fu#B@~2AM`}%GXyJ;^bAyEgN1(JCEqPtF*+mBC& z$^xOQ6zK4W_M6{*Fe0I4l%nnYVS}^_4NXlOK~WJGQQ8Ed80sEMkVx?E5{{goVD8_X zmjUs!{VyFA3|+val!_#RJ}nwN#*>?KB1-E4ncuV>Z|k#x{zDAlDY&extZQc_rXi@d zY(ewB@EJ#BXLt7)vu(X9*K`B7K@9i;qUA{lhPF07f~s9$n}$S=6EwVTD7MfvvEUu<(LXfsun@N8y?fM`daGG7AOl!+e#O;9W6PJvB#SoE9!)YN;FFQUcQW&y^%;t>px;Ggt`|Zsf$3s(Mo%! z2CfB}pMGuX=Kn(qA$}`PLhQ3aCpueVR{3vO7iNR)UXmauS#Jb$|H6XtD?k&|$)8(P z!wfr|OVZ?hO~gaPJ+&Z(B%URTl-gIXHe;s1Tz9-0v^z!ylrc2;w1BRXKKSD{>Oie==s`zlO@NU=jjUCTfEVm~LuLM1ACz#7uvv z+V3Y(4|O>sIwP4YAB!KTlF8yE+eE_*tp-^_K8mUc7$K%^k~tCa{VEVR-V~X!!^aK$ zMcKaG2P>98IpSP$rSX)l!IZVN^>geK+RCJ0LKlLz<%7~vD>o{T=?lm-YAz4QhKDaa zcp$;}Ztw&>$Z*pnAMJuGd-p$4J{EvF~xDp5c&-=;qmMrwy5*6Ft36d+xn%es!GnO>lkVR2{i(*vK4I( zK~{h?fm2B6XznroL@ot|H12M(T1yF4E)0Bb0wVyNONnVvYo+E806`)~(lEIKlRKElLIz)sI6ip!1uyjz#1A3uBoJ^RX!K4W0%|N2%+C>9oK(%7bDp=|}V^J1} z38OP1%}f{B#V=4)=F|TekUdCk4m-_%9gTR=Cf=OZVo4DhL zhhb`bIf!?Jj3+BFmSul!lG*vS2jzJ}ODk%46&*}s&WadT!#rkmeW#+jIwkUTVfnzo zK>BME9;xR?3}zQY5t=(9{%m#Sz@J~=+lTE2Q3k3L;vF*t?T%`HABIEG81T)~^Mv{q zgEs7_T_A{*_L;ib11z10y1oWugv`v$S<5Hxn?6V9wL#flw5?OoAPRMd+n!IGAR(u| z-2mI&yfnSM)j@@5GSM(&kRc-Ke#S=kA{36vV%AYTE9laQ5b@H$2)8&rHwSdN0rW4`ss5n{=u4SC4KOY(B6=$F{*tR_ z)(+IqJEDY~1$A0ckuW3&Awbf%3RO%@SRe$vUmgVUgvkE=qwF*o0o!yIVe7%ehk9}f zesjF2xZxys^u0iFy?`C4Eke(@L+VEMkC46VY3);NBilvnra7S9=j#ENO#sVVmAs<- z{F|W7IbQWqgqN2JCI1NfCSn@VfZgPL1n|x$-6C$os#dnPCn5%Hdn#VP2|t3lJnAQT;l!w;#q}#!E&zRVKRhtLFu@_EJPZI#rB&rp-7zWFNn#&-1_$Rtq?Def>Fw30dY!WsO-_wDaZ$i3C^-* zXbXwpM3*QDHjU^?*k62IVtb6J>A=a4e)Rz)*@DNZwuquC64kwXs5r*HN?|zWAV?NQ zlgzF;n+1Tlci->y3KB(Xnk)Ekwt6f}@8BpaG0NwWnVCr_TOU4rh{4@FiIQN+7SzO` zOnN?w`+R+~5d_W{B?hb$BsGs7RR>F$Dq*kZe0mo3<1|D7*g_VTVTAXEPgjpsx?wuj zfDKb=@L{vFr`v&4iNV;is^7=&8ihdZ;qk(dmhjN$peAUD@)y&VrNckbReFww93 z$QAIu{_XsuM~{e<{G|Fx!f&yXBd6QZSbt#iiluCM^>=%a4n!f&m7BsF?IQRq(e1@a zcM{VB<%lsv8yEGdUqN*oY#C)Tgd-cXmWfdvY_oJKB5p+U4T3oVeFre3TMD7)H3z^< zWRkbxF#vVY)wB|kIik4)wbGGPiH)e=>d`GScXTv$IOq>sq3EZdMF4MnnZW&snEf-L z%gM{DeeXmL%kxHi|V345F_ML#rK54{s8o;SXt%RJ;NYj zR(3X#+Zdjajcn27A|nx7g7JrB*ac!>wDm2RuY=0xpY2veE>@KtL}`Tq??=Nt4ydUx zV>0F+hSO~5sBkeWTZWl7pm$~zfHHOl#kL76j9$v7;c z0s8>iks*zkI^H9eLW6j2m?~-vXbQQe8bIy-)5ne1t!x zBhN^T!xG=|fXalg2X14KfB9T>%wvqE0bGb!!K1iN`JntmbA=LFCM@;mIZ&2piX8v= zeSa%8!Iy-<-c-XF+1TRX(fmhweNSSG>HPNWfHtPq;tSK1EO(YN9r-#ml@x70ukw6e zLL^?hS58Zi*3gNE69H=1|cBtKd*|0 zN6*;ZlNDRw4QGmpufPbaa2={8v$b0Je8XkalP2abY{Zu!C}T+V0uc55R9|6NHx#u* zB}z2(snvk}bUTS2Bsvre5Kt%fph}BJJtk&FjF0mx+>mst1?PwcX%xCS9uJQYS3Pq8 za~m+Ip{c1h3*wR@wAc|n{`zj0X5ln8WmO0J$F`@q5*`>4^SJa!v3w=~Yv)0H#RTq> z__hp4P#FUP0tmqcL&E7mx}heL>h90PHJ)t=si9d*Tm&&LNH0B`?`x7&EjEt8s zqn=CngC(dG5m8ZdCE}rfC0G}1o#Dm=APZhL=+*|&nyp8nfiJeWZ|8&WIKfvu+%XvH z+wVmW;PGFk4N7+O$SZ`kPQGPmgwSDkR>*umu;#4Nnrb*)@X z&W2%rx7mY2DHxuHZw$%02Rk4XlGIJa(RVNs!XHLMDs}p}hS+U0;OWN-CUL0(yRk=_ zy@)*qJ%CPngJLe}(inD6z?7Z^@g)fcyAGazqO&I5Mz<|j($dnh?Q1LM*7Xw8)8pZX z{AI=`PiCV)aY%xOE~Ysw4Q?&KLo91(WR%>c6i6C>Q*gCsZ13*fgg^36qP6w+`{v#^ z`YPSlBk)t8os!st?;YqrcjOYkHri7$$XftVfA^9)}{YwIwK-gb@&89gAORdd{-q@;wXobMdJ z*KFaA_?81a?vJnSP;}cC%!Cw#bYfz?Yu&na0zB|c&BXWiuh@3UZ!%T?_U$2}ZAmf) z?6@|EHe?TGxOsUQ+5`BTivnk=HlxCV>?P;T=kaln+J$6E;`nkEd-Q%nA=1_*EO6Ch zW>_upL(;(h)O8tR2|T1Xca66LgQ{6$ZhZNeuJ?^~C@3nmP9hQ->kwY_Tq*nZ?Mq1i z43$Sdw;aK=?BU$L*RQWq>_LuSJ_h+VB=^^PASM0XcGjHd$juCQ#x{aBBL-P?Bk|2M z%Vz#QF8&e(h&`-A(pZ7VoA@QB9;8ZkCpc(Q&OG zp0cqmqd%74e-NSR{1xbVic$M@Od5qIU;XcZxVH|YI&>_9Ekmvmea^o|YFe{+Efmrl zfBMBPE-Uy#I&cBBO}=UeMIBuG@7iGP*X2X~P0?|=2eU#}^z|LY+9^`9^NH=p`H*8R^<;jd}i b^ecUh{qDQ>zQlKHkq)UHRlTo#=EDC2HFP#cb+H7 zk0UdC=FIH1_Sz>}O+^+BnGpHiyLV{va#9-a-n}1${?9{%hkipman7JW@D_@)Qt$r$ z`xN$6q`rG67b`C%uI00OW{ePkyKsm8%YW)BShZmPG8|-M?VXx*N}EPqI_;nQ_CXx8 zOyNQsSFM^-L%J&jSwlM8!|pS#okkhrXEDN__QwKeAP(J6r=~y~?~D6qqJnri%C9}0aBeS3vpb;%RcOO%~8D7$s57K(WyR`EDcYQ*9k zJpcqydx3HJGI~M~fg1hmji%uRUei$KOqG4>%&>h3?PM|b{(NJwpk^f|sb4=Sy;zEG z3g42d|NHk}#``5Wn~WMAe-t}OEd7RWg7-&5Wq88c%Dj#fn{9?&Eq_FPGHAn9q@jsM zxFdUqRc|E)`IS;esYHe$0s8L>+TZ=tB&gwW8MO}e{re=t@8`=<@D1)S*6s~D3h~>W zR*)%$B+uY@ic!%i3rrdk3zrvoOCPjV2o$dPv|?<^^mLjOv|?HG{_yiCL7hd4kcKw# z!=C`I$UZ9FM?6!G0sa!O&wa+(Ci%@}d%%VYj0TG(QmhjiPaW1n9$AZD$)%@A**zJh zJG`Z%1Ae69S1Gj2raDC!g2*INtdiOX+fe;5%V6DoY>)nf?HG7Io=-8l#X0WJulE6ho+t_rpE$AiDO?9K z$(8IFPH_4@OWNT;COjd9V$_7V)ipD%amETdPk$)_$ERc>`%M&Kua*zwGkudNMsvl^ zVD0JlG8dB_Jz$C8=(j9UR~B=ue6=r|tuCtDT7u^c8s@Z{=%^53!??{FXeBD>$mvBa`KUe;kL(COu%2=9 zh?^eH5qz|cii>-pBeDaZBBiU~D_^OvVgb`MpBP;0AhsUcGbOS+!zlPxq`0E)dxS~B z8Nx`S?`KWqY21HRes^WyF^WNfL?;`npG560Lpb)-=>1-=)2!=2;byk^xMZSTN^WB@ zX({r3v@~f#s-Q0hCHAfJ?b$raXA3?ketuIGCJ5QsFKkbFn)?a-6BU0&|ADoVIbZEEa$G)?q2SL?(#2cjJ_W zgM|gnIniriKwU)bN9uVWd28jnJbonSWaXZ!*6R12L5aI5XIMaRNH})M0v`>BD{|c; zI(3Fpw_c53{QS9bSGj6|z%41{>~N-Jr`2Ie%BIoj%s`%kA0_vBdBzgkSEYdG%p|dX zW7ajkV=-;0G|b~n(-os515*c?(JVB&w~H&21o^L>0g{&qdvK6|a-~!X9tSr!9wqk_ z0|}8HNUy*k_Iu9gbpUVXm-R0CbAtao0 z$BicG?p$B}n-4}bgXbIaj>=b)TS;dVaVKQxKV~?Fp9&QT9QRagU7hCPB;nyK-E_;8>GsbJ{-`&UgS8#NQ z`zP6P(bm|)=#yCP(eMjP#N)BvO-o@skF-o&ckK~Z;t*m1+M>Sh*h)^lTOk2=xb=!r zNFFNL^X`xK_rXXI*dAPG*Uj>EqK216Y9EIoVBi`GM14&y5Sl)2>a_$MY7hfSRXcN@#@ucx8) zU&sz>&EAqnq-1$Zd%nj?efHiHD##xEGLeJl?KSbj-T##UJnO@V9_vaz`Bi9Ik z#1{eg^QD4RQB;QTtoN^^ZQ=!0GheYRxF}5j)U)nNvqT`nR4<(VDauxwEFCu? zoJ96FE8KmxN0wHAHA};rR}OanTYeI+BRpQH$(82wDjMzT8i~)M=QBm7loF-c9rW5| znyK1n*t92d)=642Y9-FAv<%cXUIJ+iL)2iqu4(jbs?Aa5%tJ=gc4`zx%iIlc9=WGa z9=5+6E!n=4*blYckHlyx8y-X@ln%R+l?s=ow?0mW{K7h2?tOI~?Rc;zcIkC}`CQ$7VtlFiv*?t;vc?kT5>1o}L*?Mmi zc+*DmRGGdOUis*7n@ojI5Ys|Z6kBPO{q%Jq*eQN;Whm>yuBy(cx10M#8a;_>MQ645 z`$_!C(!Cm47-7V$Aw&eZvrdd zk6V*@{=A)_QGQm4ElMow5-`Et=_(Qr(25a#(}umhQS6m#ftoS1Rl>dV{E8V*}gGV>o6IMKM`_eSXa0tTE@A6gl!%@D3EXk**_(sy zqo>S*Xxs+%XMqW`YF028Gv+T4;$O_m)MTpR_pi@PO^=4(&xi~HLvsJLiYR4f7V)wv z@Mbc8_&)eT*BTj!@h}MZICO%uV|V>D`Ph z2Gz|I)?&W2$yvpxHI>4|thoxC`=w^X_VUF9=^(Qo!5X=>333;jlzp-DZF9#BJ*UrR z!DK3@fC2k26qy3$fN{YnT((k_165#rV^OFKxRlBgFJh&`oa(aGeqq7A@9I5^5oB9d zqLpB?Bn#f1K=?4v!f1W#Xp6U*W3uh({(Uu$8Fj`a%=xVT8rO$n_D~CPVp@tz5G?oNNG#zq?Z)xu*L# z?1VO(d#B_dM)s8-sCHRfbzwB7MdUjM5Z(LBWYQm z-~5lvt8pi^?Wf?It_sN>;|R5@jm$xZB&a@hlj)KYH!yU2H(!C~VR0(id>oa`1YU*j z2EK!^iSu=5F-?=q?-Y__l;(POMoM`#N3ORmrP%gcZbQz;y$+A(nss>q8o5mdJl_!V zS3(^x_Pn||Cu8JsNp)^qem@<-o|Oo-Qji7ND$j6XfY2mxa#aNRQLTQ)f{14gFYwY46NV2Ju5H8mNVF=lpG(`8QHzr&0-n zUo>WG;-0xTyiLNDA?AexD|Wgv7z;iu)9*;bOU~sN+^^I%S0_b3%Ap7Vyr#6M zev78^k|YrEn#ux+2i$Z0Kg9spVcVD_j<>TwYVGyl$m#Y zys`L+8W4}1sJ0X%br<><1xaE$rVdXhtcC3%LDWQacuTvmXGlknCgm+)Ez!fqYy4!% z{Xh<=PuW&UVA>si^K^}bGrwahkc4X;xEhzAC5g!JPV_f39S`n-MzC9XQKXi5ol$xg z8ll2Xr5Q2^SgOOJ(U2I~Bx8*)13n+Vv>cIE*v$KghbQf7U;aTBqBdTwLGj6gDvf&9 zZ2Zei7N>Qk>Krgr4%1rArxgc@^k&Fj4Gpv|F(#jw)Y<+0J7e3bi z?zxmco+dRkcc+`iFTNvF_rdF5x6eB`EQezD$D%RFM6}Sea4;nhuHU`>2@>zBCsvqO za5Xg`xudelHVKjfyQfzylw19*1$aw^-vsw<2F}M=D;1^|-3+3laH=`Y&NbUibd}t8 zNCuNj#%=Su_jctF;0J@-0F+HZROqSZ_+_HwZ3{qyI=6IUd8f}mm=(GZ69WEx^rR_C z+|c1*E3=fWrL4oY8I=4hAvN@qa4|=f$?kn}u&xQ8BcYIwOBiiDAveq;g=nkM07i%M z*;Z%~v!?_R69&gowD=X34IzI)ewrs7Ud?VSzU(8(WzC9v>EEiIkX31dXqy6b58#JF zBl^ahdB4^Z(2L(6aw(*i=O(O-r0QtRXq~;Z0Lf`D)?&$$YOE;?|q>?UE3 zFiV5CXKAl4SSL{5Y>JYvUcoto>S!1RyQuxiiIjcMRT9D(Ie-YW4q;L^2J0As; z$$&BEqWAVNSOgZyd80G6%?JU>`MM{l5vcpSn0_33CLY8$zkjDCIysU|M8z0BC*}Xr zh*eGT+av_tfn`AeH>%gT)hL$Pyk;vJP9+))Z_&F6lAE93bZ_xzJp;XW}214 zm0@Cjxw|S*W4xAAGug16C<~w+O;AEe%qNh|<-ye#1jDtnmTy^jNSpe&3g+$&>$&OP#4raed*4Av-;ey;fw{Kn1fqr<#B1&RnCy;)A*2E*30k#A7s% zMb+NA?Ta?hAys^Phtz*PnPk2wN&T(8f8DSIgt*_7OK39{IOFPP&t#U3tOFdsge~vR zkVlH<6psTnDdycztRsA+-49vk6uN!}VBN2_xTb2Y3u+f;Mx=Ar(%&WI!Ge~PS555Y zy~Yl&nid^&QAcNaa7X*L%}Vxd((wULHJ@`8ig4oHglRE= zX?b>cMp(ssXes8dHs`Uux@pNp5ygeMiH$P{CS|E9?a6a9W$jyjOrAelj_$oKR#`T? zednA6%T2gi>%&oz5jxz>r!Ie5m_*V2VD(38y7?ct!iTc#MY+ZTQEZ>rotP&+{)FTkQwQe2HuXfc5Ji=-{yjpXiE;2%g6#7kyHrn6E@EY4lXE zxLQw3p-Ie;XGmY|)^DE28U!0Z2OVi(kyaa2t6?OX^C40+|AcH0HtZU>PVBwACOUtA zFOfhrlTiD%E)G_bDU%{&k;5ms^6cbd(dv>tEy9hoWw+y@(kV%1l`NHAp^}#}V1oG*#OA`>8}^R@h!Cl|K;V;YXEmO6RT1DtOjOE?j&xNXwv6dj zZ9TK!hBh^y5LE{3l@h+kKUOh{gJsHw8K43dE9Y3Hrg>bnJ#Gu3l+2FyEKxodKYtM~ zcUNy1FsjzJA(R1=(haUBVQ9k_Iz}-&q|7a@4UZq(YhdG4V2ZP_rW)BBXYHk(K}QXp zc6g*f{EvV^Rf@dL=-{n}o5W6mPhEGSrHkWHX&T7`>yw!2Ax_{f@z;P~x#tE)9KajI zt5l`)^513AwE_kdgSErbN`~`t^A>IwArz7^R<8|4`A2r%f649awh+*{<4^&BF7@d7 zcto_@Zwd@?sAoQH#7m*HY=!~c<}*Nm!gD12b-73XJUF?iB8_rtYGix`M^vsc;IZNt zTAB2}zWlp{y&P$omV*|UL5r*;-C-6R0F!~%Xq{4|h#x=9tRLZxPhhpJ9QU>cbW+ymp%y z(?Y5zlU)Dq1q9xpQF;gn*CBJd#X4Jq=o`>)U8e@K4k%6IY(R&-ksJgGoSS^Qgw9V5 zi+Oeg&=WwQLn{5fM}}V1`YE_a389wYBW8fYla@1SetF`Il88Yctz<`X>bvt8_hNYS z+*D7LjESfuGs0DEKQxE4 z1tr-@I0CfV%s~G+C3OaK2=Dko6xAHQ`6HW3tUnlePwb`HAWHB?5g7N6O2c-gBI=&Q zNUkpa=7!cHkeg#2Rn`BWKL>w(QD4ak%<#fT7r>cCwNFNE_NekT?V2&#{5>^8Hi}u6 zrB*zev1FFW8DC*-8Hf5>fZDhf9|IqU3M&E60BE1)r$*c+1;!nTm*rct13f%ORr_mO z7+*Msq%SHVU)eKwKQTmmtNKN~x^t?sL;Xr1X9mi|aT%ft^jI(@wo$u_U-f5g8E~Q- ztWC?v7)}Di1@QB{$$%dj?hmbvT0Y8AvHfq(d8-v+jWc%Y(bEiXfHGSJxX3~rIe;yHW#{3?R254p_~#BSKmIqOh|Brrg^+?jq2D}G zDhj;{XIKG0;x0WQ*;`5G$paCllnAFA8 zX4e0k0Pw_(tme3_?9=XlMO{=>G-b9^3gvJ=rJq(V(pnHlXUb?qjey)(iDQ>CUG`zC%wLY8xVbk&9`l(C^%zH5qnlarYAUn#?0(27p!5K)oh3?u9c=w zBJ>Fv6oaQ4%*7#`RqXp_yk)iUgBYd3H_7Nr97<2#txCHLIFVEso43}mV8W#!@TrQ= z<@>WQ(0oZHuWz_@hC9CaZ_PL8hUroHxNg-W|N8>~tVy(Y{K%~e=9*P4@)Q1``m^-C z4Iyrwmf+mK;j~3@6A(KP+udr?4fB}8NC==y+5J$v{B=n#TGHO%io<*)f4ejqXBZl; z$~8clc)B*fiU^;l8@op38l4?7o2hDyPl_y$SNlJ$?#|Y9_h0WfPony?Cr~vwz(}5l z!I27^$wqZQp^!G0e6W1ph^Ns$AC-fu7=`#3+HB$bI;Bq`VJvH~jLOc8%0(Yz|2=@? zDE%!qh~5D!Wv2GZIb25#Z-!36*X@mBq3>!_uF}-Ul&BiYX)zgYr%yc6y8$uD_yCJ^ zIVO?IyE?m{MO$BV^yad+!yjnr)@4S0$TuLxAa8;9Fgx)z)gJ%a->JC59L{5M%iLQ3?? zH-+d2%~nIij?CyJXH~Cl7v}WT9}I38C*o0q^*R-Vyl$3F$3A;({tAU12F#VOv|@iv zMLmOgH0Gk&cuWry_ygrhe*Sj4_~lKu>>8UG$Y#5oyC2>_!e!V}NaKg)pU~QdP(?df zXV@0gM=Es44zL#1(!A%|6!Hoa@srBNocp8EziiY4&){vwmF({RZ)xOK43|*S2O$;F zj-AEyJW}HU10MbqJ?#F7-+{s;*w3iy+z9!(v(=HmZ6s|XeC)`UlQB7KA%&LAqb|E( zG>d}#p3-!RRoO6v*rf(j{2HxF`ttH}zg*O9Wfm7BrrE$|@kLw{^~hBX1W&Wv<8@QP z2jjC;igDyU>DH;4G`mu>u^GoR4xohDzHX&jkqrrPt|L(B>)(($P^Nj@kzCa(X$|hk zD3gR%!UQNYXf$Cn3HMRJ$i0I+%`*a(Vu&fD0h5!H^WRS7AxJ*R=&Q2|m_grfFaacx z-d6cQVF;|1RYx?)8PRH(P)mfVBafSAH80+oX!i`}XFVHA?Q@@Zxu zVs^~sX}-#ru_v-G53|AhjOtCl2<+42&UV?qUE-BW5v7m(`s+bS?{AaFs;lJc)suLO z!1}L3bjOCS+PTS;?OB?wXh~5*%Ja=uLqm`ph-aSEup8}to}#i;Dtr!)a|C-)91Vwo zrWC&}*l?(z?bFXuMr!&@4l58y&RWX>lxY`-MnmH|rQu4hh-NLJAFiA;MjR~dna8~h2O8(1H1k2 z>z6w%WusA9bRz%r!-r(+bLv6wTF9;NY5bZZc&XkP$KT_Gw%+ucO6|1)%aQlN7KlFg zR>vpYle2DmRia?M%)x-IPG>X#B`{4{N{eRL802%7=cPj@qf5k{0m1YGG;T{x8#nru zohURHCrYm_X4fwII=gOP1Q#aqIr|p0+}@h{oEtdc&?$99B_&m9mdh1U)ETtB%&xk! zTdh$JYF4ONZ4vFc|2&vjF=++4`ZFh52AR@Fw=S}-A2-VE_Wd#|ar&%s-=#jX@m1h~ zI2arbqOb@!>~Q7!#yIY}UZYU5oW(%!!AB?W;f%K`PskVOUr3u!K#o;Rh|gy7BDOIC zWGx1Bi$Cf|bty0XIYa{PMVvgT)ral}E;rK^(n{8XTmwaG4QP0rmZSbfckM6>5EiR! ziD;Qsepu0(@$cKY?{SP%Wt<=Wj;W21mH%FzAo@)y@$1MajAb=a<^(5Ldv_6w!E-J$ zVz_1$voWmibj4D)d7X7kiP6wnXO^yixry)i3JAkw5bHdqbEU)usn!(TZE%7h;BeTM4%5oR=$o%KZ9ZcUU ziGNqZzYq#X$og-f<>s{3RMywD-`P`|>)W~w>T->|k{@zCX z!}B)>E1$Cd9G%fW3h_^E6_m||M2_XR@aOlEg8Fg4+T$Zi?7m` z?!6<~{8VAIsbVvV`KZ6(4|eXIA*hkM$dMPITPEp)o_kLZLCPn z&(F8SL&Q-XxjQ>^E9_LGKiAKe#}K5-Oi)`Nw^x|+y1~Y0(p!EhQ0Jc(DqfLoVgfDK zj^?DS9IbU;5AFZ_QiX>`CCQRfM6OjvzV-RdYomS$@Gti%PmUk(T*u|x%>Mg%H-FnG z`+GYzO!m%X_bB?|Pn0X<6AT8nDkWxLA(V{KKbxy)&~BdZlzH(_tF6@V`Hnj!Re56_ z^~>nB5br3}&7mFeqeB+Vh97A-SWP;G_>{X(=>czEFC879PE188UF2%@>T@6d^uu1H zQgoLjm3`+X5?G4CRjL&pF{p{IGyzz^`P>}N^mSK2S}du~zt&9nr|hC?qLpi;B?m@N z0BEQ12NTEif!#ja#mnuw&PNtcw?|A2MCoA|RFd!osT8y}%VFww?R6mTOGzNLEMMn< zFs{JS*CRQ}k2?{sG-sHP<4RT3$!69XaF>(3*Cc3l^kRnE6TiqTFvEF# z!kE!FAW!Uzlh0yqPIee56cm}bm9sx?y~0ta@&xI8Q$C|&IRS$=+jox1f|9CzeKta6 zvKiDE(lFT$?8jLSNtp&4evf1InRd<3rtRVa6fm-_g{b)&Iu|@>QYj`(sNqV+ZN=8d zmBtEN)6KubZKSSXgjez)47|i^C!Asx7;Q>Y;LG`1Uo>VqGR1yy03mKgEuHXU{>)&= z*+@#5AU%D$l>N4g%JGpNtRy7@vu5scrG63s!5h^@5VWdpavS)&P{WqI?H!vz?;J{f zy*3jm1&+mM8N;&p{IzQ$hbOwP;BDgsM6caI_w1kM4Y$I1wCtE%B)}Q}Z8QmPzg&g%asOt=p~n&9TnU3t4IMVcprE937bA_UtXeB5f&o zKyKBn7ug6|InZ*mzxS=Dj^~h4b#$S>pB#yt8rU~j$0i-M#&Y4zOtC2v^*u1%OPO~l z;FkSO69hZ z_+7x!z^yHr2Bx2hfnt~`O*-AAJ11#^q`@xaA>PSsF}Z%b2zK&d3%Nm(x0_s5n<{T^kg^0;vM_YYMeZlPKQV z5c(Z%aR5=BfH%7Az?R(kKMw14gOte9-KbZTDOGfE_3i@|`h$u93-e%HX$$q0%vs{$2jv?RU#~hmJr;LyayTC~@^J@WX`~-mzUas@=Qi)JS!* zEk>%X%MTJVp%fgC`OpUxrt(;wiWIo!+=JTC&k8yvMiU6#U6rV^~YXMp`N zuGvrZ??Q^@O%GD6M=i#lz7VRMk#1?Y@x z23nn~0=Y*Mw9Ppm3ExT=*(;P@TRT!-Q544X0&u{N zLol8v-;ZkjA74`x4AU6OwK6qbOof&vWEC1cLkRfC^rdV`{gAf2)Fq}Ky!6WU*z)wq z6;c6foGR+vKD`)VVS?1BkpTl)w8muD?p?jMAO7#;)cRO<%CSygXPmJbDx(RiOaw?$ z;GrjGh^Cs0%%4gg7nyNVEGvS=zHlm!WBk7!5TFoAHVSApHQT~L1&lG@16YzNbi(xT zEIbLgKyuAx?a3|NP+kWSV9h{yt<+SsWF7M(cofrr7m+MQ@c?4b=fZa;B z-Q1a#rh;*`PN&;(jx$&9e53I*7bBZ{l!%}-8qJ0?_K@$^c=~Fb-P};;RzPY=7f*t? z8VBCTp5+SN2GpC--fG>dlrE=8X(;R5jO42I9MTsUA zAMI3KHKD|F3)pqtN%3b08;h2~3a8W;KuSSg3!~%Czy&Zet0gE;U?+d$TdMnt4RbU&7NW~aEeo0T}#+`U2g>%xe>%}|;?fM) zE{1ied^-6?KofpEOqxT)L9e<1g5V_fiN%K8^Cuep^k03Y8`6c$>Mj_g79quy>x*nn~k}c!P5c7 zdw5+4JBP@nXYCVXdQH;Pn?EdT1C&qt@aPN6haXer2Ma|BAD0@8>CglIhB0+4#S`(i zwSE~MoB-*`q>BQ%FaQ&(XiMRE-eN+Or1;zuLY*d59O{vHB!n)jmpmv{Vtt7o> zXnqRov)Z*#!m-1Q{RR1YvN}%O-LA<^Huh~$u6aM^&&z4XOWxtGdJ^zv_HFR0FvtF^T4U?>{rUW3i}DmrT}2V@It z_S(7}MhpZ+y^|&J&XKRWki6=w*EmtA3&8_OTkIQGpD<$4H_1Pp1>YEo9$a*bt208VgrsqgE+IbanN#K`>dn-F(X{SX4_HXpRR9{r8a5?l^seV(Km!C%OKm zs%<364-AET#=rZn<73ZBtQZD}h)};XM*tiQia3|K?FScTe^S&+MJ%ACq8fClneKME zfz0@W>=hK{mDaIX!*xd|+_uR9UhRAfL3?d!RySKs!xF|ifx7R;et)1G8m175YrNwI zC>V-@GcWRPNujhBH;IAx!K8Cz1s%@r9QDJe!w-G4)wZU-7`|MOM1TWEBbi;M%6odI zd~|9tvQ^Be)9`PG?T&aA0UQ8-we}wgq|GN#?($yr6_oaH(jR8uABBV@wkHFg`2p#o z+1*j~x|rR+YAhL%074dacJzrr~6b5Jil24P(Wx7H*cl#HIa`ZGBYIJdgQ_M3=_tfbO+)ERGy)h# zE~H78%%~*CfSgHt`ytKdxF4IiB%>8Y^_z*B40&c1-Zu)n0`xxuO7VyGA)k^ z%yBes{qnaWm{C(wikF30hF2d@05JMA=HZ_Rru3nTZ^JCRJx~kwSL{+UBQMGIcx0B( z5vW$zYq)g{16*HiY}w3$*!ExmUvvdlzd8k?1I`vZW1oaHC1403Fk$knJB48psLjlV z2RK!qI}3Ak!t1P>1=)&z=jP<=je|&rmD3qdC&ylPvqybcqKVa-z z$_jpE+(V#5pB~QP9wZS=yo)g;EmrYStO3ze6(r*rP?Y5-fyK`3Qt$5CNrS` z`Y$R9leB{*YYT9r!w*UCBKMfy)g)#J9R$jQuVVg$*W{Ocbi1joo_*cVRncEbKQBnx z>Z^An4){?_7XC-hRT(M+7}yj}I3gq=F&3INt3+(@PkGdeb>x}3L-Vq=5_S0`ft9we27A z$z22|Vl--B`n|&MBogt)_}`xkHwB%oN`CV?$7TqP5NKWdD2qFblv!8G`*p(zhzmfzR*v567h=Gh;JhM2(@fu|6Ggf<=Zpff zp{gGe#Qw_>wV8=$f*>J>eBn=Fr*_Pe1+ zIUS{#Y4TTtW?JW%J`&Nlhty=UzbaMBq&?RX_9}H~?#_a*j{(_!d+wKa^H5Cv~_g zR147cbZ_Y(Nlnb zL5TQg2i@CuFtKE4@$zYYsxtcww;F{^sfSTfpDab5nU%d}r~L$Jr)1`qYE1$oA%BXv z-^=R6tI8zcDt?K=`8}S^GG;gCcET&@M~40$np&wyYsN~Y@@)4q+T!-1fJ!?V(GRyw zV+32kBlqX#fL`UhHV4~8%^b)6j#@~i{eTW9H3VzaRpQHv*77bAMu2Lvc{vB|qkrH$ z66Jtr#w~4L`;S=A!9~=&&wt1#3bRqwv1A?@$k((;U&9$Ui?`T}vo}U`n{8@_Hyq88 z7qXHx=bC2TwHJ?lI;jghP+Gg3Qx(Ld&o|8BbkGU*&YPM;Bds~V$k?KcFsa;(oj=*N zgF>($HrM6KvwW{jHdBC{C25n;&|*1=)Ya{td@AYl_1K@q3B#Q!L9Zy&fVWOANo^$_ zIWbfWCE0h^RG-&m(aBgzmxI5%YSQOn{2qREB~d2qp@3=y)w@KDD!4;Dpn05Y($Vj=5oK>TkiB>UbNomRT_hyKo!^4d=qN+j&cEq!31J17CsDBG?7 zO=H~e(2Ej7J5}s*cg8NlmI|4x$|I^ue3-@$leV~zrfi6+0e5Fp#zrmGTYW%{5S&m~WxTBYjg!()I#U;$!t@J|dt2HvyfaO8voGEDSt0gWI~6 z?s&zrNwi1*H_p^VdbQ9_-;_tYoY>O`uzd{LqMa&qno_RNIW35rGtyDbCAh+R^~TjM9K5DcM&Lk)af0&54-aT+pR`Y>lDI!hxz9J$c7Y$U@_9uk!Zw3 z4O`vda236*!sirJBC)8i8}EQpwS{qS=yzeK+&iBiuZNE`D;NXEJ-vpnC?fRY%s_`6 zz*0x97wRVp=1Hql6Ez0HuLGL>rCc%D6VA{z!~nip`~&va_VS49JQ2_1_x!KpE(;8? zy}^791nlrRemv0%eahkYRZbDC5`_&VCaE~0GAz9+w})!i zC6PmI^UT?Alk?0fF+=$C3}}1$xF*cb-BvIiK3>y{)x!bP_T^)QC7i4Q?ZoL!0-I56 zB7Qe=JuJz;R>vdU&SxZ7LWl!YHudEBImMhNSQvs{LQzMXS+m3anZiv-x4I!NP%pT8r6viV*u7*q`xvTInpmw_$v zIHJL7Lj;%k`>yB}Eva{yRjV+LYmIOy_B`S(ypU;q?}J(okka9RG9DL2n^q;_NSG5(of-lc){ua%(p&gEv*lCoHY zgin;mfMQIb@3*!VF8(!faO2e=Gek@5OLV7?qa!|}j(?kXV!p1*%Uuq{jH(&cw|SQN zS-~P;fNa>p@>`Zrnua2JZ)AmuF>O&C>IS(g+fO7JTrRh!g7@{<_VwS#lD^Cs+eTcY zG_?$#BqkSWn=2>X88sFkJbK$nKenK8dLRhmPMF+X2fLNYmFZVkq$xdBDGV!A&6O*4 z?kYTp7rv7Ys8G%GYPT;Nt73?bUZX+<6P}wOttQQR&cFQ}N=Yut*^|#>jP`CyRHznt z`#pLR5vGhr`NO#k=6g%K+z~OVT9d$)1`B>Bj68*cbyTzei zo=}F3gP~Qg#^E^+N#<2UJ}An-38bp>V=Y1~F8uZo+upsO2^`E7!j~oneTtBmE|2#r0iQC4no&>9;D-? zh(Mc;iPDi9tornY#F;jPd0W6pq~<1S>-|06WIFeOv51T(E zso(dzVVqJ#yxjs{4zXMUrBaD+vvt*8xV!s8OuB|0fh^~MPZ+AJaz`7PPJK!g#!{Ta zi106yf!ilq`afg&E-uhg%vYibNs!*;(mmaqcBNTi?5mRaX%8(a;oVqLIN`n$By^8y zZ<`u>g<^Om*%E0ik9?hcRx*Oh9Y9@risWzc1Fk_eQ;`2WSl^sxo!H>^l{vW}p&%j& zQ6bKFY!)ECx#rIIQ;Xo? zvQIVz3BBSgOr*~1U&V#o_M&ieGVtwICBcWVfkmpIB|Ru}9_4;}zQP3i`v>~Y=WeZI>G(692UO>5&+E9F3>Wukh1b0a3$;CX6t>eDqmRUE)u{kZ z;7!4TXbL?Q6Jl%E%=UI3&hG9=nlfu^t%t@KsltOlj7e<^n|FTHvBZi-8EYDwCT(3n zR@0F!sHxka*CWeg-#GwmIYyn)6?O6J8`KBtUh(^*NJy4P#KtbHN4XwOsgbdjK=ubL z3RZ7PFX~!$%@;4sufM@r?Bj{cVI_-bRoiAxWzz{+Qf4T&5pCc%6WP7iOEyZJNxh_1 z0fUJ;T1sO%q?F*o@H#q~z?acoHk)zW3e}vptUGQ+A_+7Z%0-*?n?HQ~hA=MrCdD}b z06aqJ>#jt^z%sOiy+gWy$4!z<&-{(*5FW$xl^Gr;g7nz}b^+)NY}KtpB?eNmwKk)* zb3DM->5be$YKCo~7hwH55Q~V$G7c?@?`Hu)G@d*8LMk)Y)e`)h(x;kA;x7_BzmJ$3 zvi=se-WAl{TPWTD*b+eHP|y@)R{2+GRPDTikujD4$8wqOHOU zW&V7&BW8iVfuJq=D|u`AJgwTA@>ws-0bkH5U)`^+DB&(o9HuW!8OmY`IdTibeVKem zM3$LqBRYZshtt5HLC<%`ETsGa57F0F)*#~1x`tA0r1&7cM#hqJhgNr^$WFPmw5dZ5G^)NnUb|+EbZ#o5D)#HsSKPCE z_Y?UtRV%{>%v8$2z`(%ZEJ21L9);RxQzuXP-I@ofvUezx3%1xu2*zckbM4 z-J+$mS7_mQqxLLa{9fO_OXNM!XV}wZU|?Wia2cptL8KB+Z6vDMSh5dRdbt(Kbt4&W zP@T(G%%S8#%0ep`7#J8B+)jonLdq@P@T|3P270dab1_lP7AucZNZ29W zr=*@;kwPj@-)U(u82-aXl>z2YC>WBJh7l1FFVp{xARqWFLZ{Q?eQ71g^W})p7AUXv zI=(LmlH@LuR*S8Sg^i)oF*>2Ms{4G@cYW%w0TJnU^twW}Jd?=_ebe`g;u?&c&>AK% z>Z2OHUze+W8HI+o|_S?INL^t~3S zr5ed`0?A|#dR+u^70&a;r0*LHVI+eU@qIS(ehNuJ@q9PwH76{R6c06nj$f+N>Hdvb zI%e&XaD@qF==BCv9hbhR<2NhBNrEtk1caymhv;?sT5M#4e1a9KkHKskD?E@JhzkXJ zAxk7vFOsOdK<|yuQbfWqke>89%wVQt_Db?ddx!Ko14KtkCz1ZYL2sk(WC2oGQ;-M( zGD^o>Hdzh?bHFDNv5Z;>GwbQ_t@BO@dKiR2rQJz3^%fZT`> zIg*>Z&~L`DFay26PMZ9aZiC4l-!D|C(6c0Gv++5}(jdsNEMq(A{l@4QrhU?PmFe$~ zA?tL^ZZ`6M2#^;&_z#4#igU5O;Wl@t&Kv@6Pnj-QHI5@y|W z>}Ta!Me?8qo<9^36prO*Br6l3NF;fZXXa2KWS!7uDKM@h$WeNq_5$hk9%&X%&Na&9 zi;nL}uLsJm)<9HDaq%Tuw)PcPA4*bCA)u)dy_qx-~uM-&{48ORtR(&O@@}q z6Rm#{8Q#Gp3ZzD#Eredn(qsG>WfFzGYkUv;iLh2k1j+H|F*%bg9HF6wN!E`>hJ_WP z<41!S*~t5)u+XNlj{hRZYznJFj!TCbN;X^7rH8*nHYKc5lnR6=ToB4;tqS=om^B$f z4MsMq3@{zR>|}MtNLB-BRYxXuD3*vq5igVM{F*J3L~O7?$jWR06q58kvR;tVdM`vW zkMbEXe=6jvINN|YNuImF9G2Z5na4<3Wnu-uo=k9oq?DTA8gM5;e<=uHSn;c0_l-F6a zZ+^eB$0wPaXeJKxsBC6B2jwGqn9@q{FGVJ-K=?)0K9FRo$d45uS=-tnae* z8udF4t49?XehL#RUQ7Gaw3uL{?}varon|#((F5&`JwRnONCNZ`oMY&-rr0!=R)|?< zszKQ#$?+TEs2~f(P?)D6B-jsPBg=rjJD8}XeLB7Vc?(4~KSYiRq}OkNtg;o8j$aLn z174Fd`sOc!84RXYWj0SU_U^PAEzO=tuvxwMC0PAI z2BmEsvRZ-ku%8UGsN&=&5g*TgsM2ejAb+y#43_o`Nw2|zANJ>f{H+t5)=WI7DPHpj6Q29mM5q{qM)FU zKq!U|2{tT1h-fGQf`BB{2nodW3A+CCW!9RR|5`KO_;A-fIrrRs?%CPrxA*z&edDl? z=Wirj{yIADo=Z~=3i}q&B{QX?}wG-V{ zH@09_!ju?~45o}+>wBw7au8gm2o(yL;L{Y2aZ?m7L#Lh$6jtdNFB>V7!>LLoi3>@Z)btF0pW$Vs$EP zlNdowgh_JA6i=NR^dohdo?MLq46WXGw?0Vv2mZDao_v~5d0X@r$3U`YiFRIz3}Fc= zDiI|aYLV7brQfp<^>3FIJ^FsCnEYO0k>0EqY`5-jJA1I4^$@CpqQ}{p>Gin(*}3Ew}t5- z2J<0iwEvVJ)S~BOd|g885}V^E>meG#?%u_sIHb^?w3~sLWWVaB-yLt?HD9}X&t$tm z%rWZ_7erA|uV`&%oy)^7h?GBnngd(|jl%>MU9yVjY?`chqoh3NTR5OJ5Q8|j8{xB& zrtf{MbZjTKkg=^Bch4of7NtTH9iP3tn_gN#$lcSMN-5mk9an~{Z#!Mr6#@Wm)OttK zEm1dtBhk^3zT&41(j@B6cQxX3Tv#sF*yO`9n2P#}&4`jlNfHM|{zV~{kd_zat@gW- zr=vR*qjDMGX2@_?ym?gf^iF$;_eJt206+GRY&kS%-Nc@@=U~YE!N*Rq&7k>~M2-n+ zKJ9598(Nl!zGQ zQFYf_!pMkTF3C~QTLRgdj?_5*%hX>fi;m&{K-CGTEa{oLruAP$+wdWhLC^>QdBcq@Tl5~GAf|^K2bt?wVS&T1m1*q6)m`kDL(QDE`HD%ks z{!8ndfd~}WoV=*|=R|YwdeT|C?`tuqj)E~8*@zGfiY^{Q*8Hd(s6*-U%CVIrBl(vV>APJ)E8$v_{-NnHE1dh*c#pWOwp26mDQkLqdj*~kMlw6(I7WEus_IEP^D&`qOFELy zBY9F_!w-;a4N^e=1{nPt$klU~%q5g^cbO$_wrRS^iR)2;fmlsDW-QvXmFZ{{KA*}V z0-ZGO1Cj-eKAwI%wE<6orHMV)@($b^KIOUb-9^MnZh=SW6QVlnmG zT4-o{_`nvOs2r?AX|hOP8$B{Pu3muYzwRF*eQ20JLwKyM){yJk<}HSE*V9@yErgU~ z0<{8W0>}#kv1bovk-q{sDdl>2)3)d&s*|YUyLN{TywHd-WTA0piw&w?u#kF%IznuM zf*fPk4|&G zS?`g3{O)h!7)mylmnc0^fayJ95jA2y`Xk9uP3BFBw#jd7*U|8l!@@g@(jf zors0id&qYP^~)o>pDNHc;;rnSs`k}jQik#^Tdxp~gdJ+19;Y0$&mKk<+Sf+C4a(ga!f2G5eQFJ`0$D?rV)#g+M1Q78n}h=Hz_l;M4@5 z8*?|G3{)z#>`AO@N-Yer&rouJ7_I?2X|q7kkX=sTu!H3m^345#-)!^%ICYln<8~Mp z0lTe7GaX6yqBI-W&3?-*sIOzoQ3UfpoUHbAStTA2x#zoG1Ti4OofU*q%I%rK}xlp8+ zJoC$~2;wuMQlTBRNEGdOpffQW&`kgZbQNAxbMUWnn!4tYxuZByo_U<9VApD^;G>TB zS+>pHT0ZSZ=F_4=I?sin!xhW#W{zHd|EWnEK9UrquW4{(^nUyFgwcXhO({{yK}tJn z&IxWMS6}+Fzg6((8^BsMxY35gZr&`|sBZi8>3OMx%_}EBcZUG)fjSw!ilxzcX>5m7M6g6$_^0vfPQ0xYk64Gr;U)R9Vl%;cd!57?|<*x z*0Tj#gpb~%(pg_~kwZMcRMC2a{HcBV_t>M`E^D0GKH3udA^Q6{fVbj|!5SOiqcSI( zq&$&Uz$AEFByUy7+dzBT(LAx3=_n6SRB}M6lBd5t=dmNUOz!;|L3*gE;Z2WG^;hDN zM+WlkgNMuy{WkZ7aJOVd4RsrLJ}?fdD9oitKI zJHOqfqQ+Dbo3<^>n38yRsTbGRQ;MQ848;$q7Q|rTo!F^`yuyNNCAEI*QPD8lFOI$D z)EoA7tm0eW`Qu_-E`n5@7V44`C{4*|L%s;{#(8=W_v#4N*(vc3vR0Rxv*?tx;k94eDsE9_c&-_ z&^X)W%GV1S0aeJo&h{k#LW(e#T929({^(EUMM|wZ<{r->7ZmvVFkSE(Y0F$w>R1$R zVM6iEvWS*c{!3^DEjAbcoVOSiwG#F>T1r6yg^DkeAr??+`)ngD zp)s8)B$Phl;m3|KiA9O@8_O@lYbY(6E8~KKs3cPX!A+XVl^Td4Zqg5|f%A-@VrHAK zo3xe1&__)Dn$DZhm%0+Fj*7ta(oXF97oJ_|S5F%0Mk&ldhG!{E=UsxzW$$WRo)j0d zCnZLBvp?CBD|#3rMs+NcbiqMLL2A0s+HV(7$O3uc;?8Bn_Bx2E;Ep9M<9!`B)w{b3 z3RIfaflKCj=8g7$?oiFDy|iTgx=oZe4ZG1+jyMt{I?OdRW$X`q{;eL#35jrlklu(W zB@n0dwGvJVb9vSpgN-%9H-cX+nNvx>3sgOESX@0DgJmBkISUR^%i@oaT;{C@7KwQ= z-nsP?Ls{+@$w+x78;QGC*yi>dz*%l7P}`TDY40& zmzTQx^Y%jGjjt>ArouoBbsj3N)_P6K`#eJZ>7ewMt;|T-L3(+e1Bxg7dnn^}SS!j4 z5yjm6<-tubPD*%?WOm7)O2~0hrDa}g8XnOyINy>I$G+aduLSWT zP;lrzAYH4)+6t8h_qRC+AP@9NR`V!d?i9VQHY92U z(HZHB{J`s39s$GPeON^D3hyU}&QM5KqKS&AFpQ+nzE%*QAS`6@&yM~XB-wtj4wD(Z zn}ops8tJV(LD}g$jC9&&b7eaBt=KvjdHZlz(m{3{#~K2*v5z5^y&2Cm6AiM!BHuSO zuJi9J@`>vTouI~>E;6e2W}Y3IWD`Rt>6N5ry&3t04DqDo!d=qMyO46k0j{STPMWpL z=-e-=a}iL6?AtBX&I>x_=sQyTWc?6hs1}ma`nv#kl>fc&w_^lt~ zs4Ht-?O)Zysy(dki&Y$0#er2ESjB-=99YGH|4SSg&ll%G$NV~ArP><0J|+};Pqk8=e0j1B;CH7l96MiX;OtJ zyLW%&H-Bk~JI$+18femuRYTL-A0E_kyrKA&xE?U99L&uuBn636@!JWTMu^FQp_ccV#9`B zDAXW^---FovgCtWzsuenv}}w>m&4HqdT5+UXe%0PvORhT9|1@E6`5H2EVp|{qyaZ< zJd=binr=$4xoB+yS3&z>O)7i@eh%q}0IkX|oJl@u!>q1>Or;^u(a&aHAMZ+CFhsPg zI-17(@|S4;8}z^G&;7kfb0&;NpM+$4>w%TCTxalp+kLcg$J+C0Zh9q z6&@aiGLKmIWosVII17kc$GvdLaHbeucNGkzS-?9vWwJGAH|nokI0kIg=&82W2z;0;2BvRxc*8$`bLMSri4wnQ zz*sZHw5Nh>?sJP1RycMl0h^Y#0gVOvBw-CXO$$A8(s@=dB+v|+;RNW4C?nhY-YU}U zuU$B%lMVK(!MNH3%A6rN3Bx}IZz1EknH6(wulLYInprSIaXVG@tm*(~LWGmcCW94Y zDC^5wQn|CI;)n`9h)_dQD9&i>$cE2T3lW!=-sMA!9h|-B5eElpB)kEJBW?jn!x^{er{gTAg0=_}s@ek9o<{7%#TVWT5w> zYn-pTec6g`$BjWV6pT=|N^5<*H7?sW8$=S1^h1d2KMnCDEcU<<4r0%i#&99d;f#uE zFa-WoTkGBB@ZTz~VczQ(b|%E2L%T1_G};C}ut$OJerf4!EkQchAO%r5jN6D)T*!57 zIBJW)v?QwF5~!XDnU!3o8XJqRvg+M&lXvO~H?iXr_X!x6xn`I7Xa$8uIjHx{x8ja4j2$eW~byY`1{c$rD&g5Gz2>{y^D z>TRS{3(v3ZSB$MYWDhe=DP6!i#ug6yK;jYaV}fd%1MLk4$o{}k&2?fS6_t=!kP8Bs zt~>qAX~a74Ye#pRh!@3Urf^<)H=jV-@lAvFxHx2p<_E-6aY%1Rx<9V*tdNnpr&7HE zPj(LG6ql&$`nx`}@*BvMB@#tX*qbdcC&8Md8QtNtn)r^xl?(bWi5^83grm=_0>z^5 z)Xy8ltzUc(!TM(^!sdu}Gllu^kf`BK!3V&;r4Jt0oX10I%@{T-wK*|@2Q2=L5reYq z=tgaP^z+Z@ljgyFeil2yxQmCuxZcf_557QD3`YUhI=+tNSO*3R{EAUw9g<3WWm<2Z zne?x|doGe9Atx>R+{>gxU+nr20PxjmrM_&4GS`?vM)?o9LhIGE&6JaCMrC_ zECH>?^{2)6KtL5>RA;h9nnNXf@z4oT^NU8iSXlE zW3Z@$FjHAUhloTG4VOyIF!+dGgOfGvuewfp%(wBWl@v*zLnT?c0 zxjjjR>lT`Yp_&lw^D2He6VC|pTvP|@Xzg)tD0Bn(%%g-$eT3C8ro-B`7f1A)=q^6uB){P|HvSFWNuq z-uWrKFu-I@lAvTAzZ_yo=a#$k)A>!m>J4>0!c;zs?iTZTO&na@kR;_!erQY%j&PTd zPq0|2%UNOElGaVYtUkCF0Fu&m9!RYgZBMjyb02apcBP&D#gX{~d~Xg+;?#>S#Wod5 zLMEmXX6PY=d`{EmreCF#0b55m&HVErqGn}$)yAJ?IE@Pv;w++V)mPafTt~S8Ke7)) z66;tp1a8de@+NXCX2uY@ zUr3Sb%uq>~ySe+F)#v^F{jmpo?!3-9&vU=L;%ux;H=wtm`S|!Y96NgC1Rozi2R`kn z^>Fgc&?g1{@Q0i*HR3C2-Zl(hj+}Ko=4ENgrvm?@`1r4R^C5X4@Yw<%KE8EX{Cw-+ zFF)@r3-RBt{G6cUi#5` zCH~`g-hCO}QA{^~q}Om3FW^=kG;FcT*Bc)YjS)#rTV1EvLoP%axhA|cHp2ho$-F+D z(VE=T+FHq}wF@o$RWtP9@pfiUXkl~GP{hehTkekiRiyF4X=5@UC02k%8n5MaSNQf8 zmezImR)_lbcTH``oC}-&(G*bLcUg5$NHHR*t$NRr93Gcg@3FSn!C4r}JSaS-Tj(61 zFf42JC9<_HLgbzc`=uC{`R{9aJi82!E=_g6RKN%sYF_AXZEfYujrF8j7yMfJzT);g zvQ|$|ZzO<8KmJw5U$KH}2vxT~V$*xWO4F)D3s*tF^L_4LrhlOT}D_Ot3WZozqE2WlFpBH*GE3f=Ue>xA!?kzO-JL^bKNM-TK{`tj_EU8#q*z;pO3j5( zoZP1#;hvBR`Lsdv~7mg}iNuDtD`*t%J&K{(e3t{Jv;0eNk0{sTe_xG;}Ai1aH&tY*v z#(07U|K^F}2^sRYJBI)ko1BcocA`*Y2`}dz`VCkgC3@hr=cNb&83w1)yX7}x#zh>h z#w4)JTD6U$xF9<~A#s1TcH&{c(EAcGW;JN^3c_d!_xYz-441H1>arY;UV-38kOX4p z+#lu`inB~7wMfs{0kj!yEA~@zi=p3z(anuZjtz4qQp~Zh%tWETM6umh?s@G$7XGQR z^CK>rasNb*GNm73M52FnJ%=8z+A$()8r0!&MsLS%Gdv+_AZ_;VegoBW6<35fKIXn> zkgqYQu}QBGkL@)>lEs1g4Q?KmW7q3<@Mjyu`QN?~!<8%g`j-m5aA$4;_MQfg`nX3u zG=?H64;kI+^T52QgK-r`O3X?lD>)vKsX;q~i>RVI?Gs&CVuRO!m@Qp3fui* z>(IkP;X@_$i_;j+Y*W)wPYEy~bjbB%F~sY8i)g5Z+AS4vs3I`$j`GC4$rFhu;=Xrm zr>E*@ucO!jS5KJPiejwn_s=>{Be|!k>lL5Y0atzc-8UQcoQ;2YB(Wd%wOvP+foZ6X zZda0EZU3;h=Mj?YcW1raEo(ess66RF`9z}g{lN|edXkPNf>MMq(o>E4`7W0DbIQW~ z0sEoFkP!j|5VpGIhzDgN(LH-|M2tDu{Yt!!g7r@_{02i6o% zcvE1!Q&ohOYx`^BfWU7{Mk(N^hwtX(ze0^adS4OpESjX0AdGq`hV7p8Inf;-L-dyD zaW7@Fw1Z>tNBOg*%hZfD%)+IdXg7>891J=T^-==c9qfDZ*ZUY^!QGJq4Q>HrMKvP) z*}X@z_xYU+KZnmeW!7M@?$LIX8jwo;M~h>E4-ee&{-Ol)d)s@ntw1S3LVqwUmT0mp zbP~f6B4})XN(EUtcg{Nq#Bl9y)B7+Sdd0Ic6S!+mtngF+e(5aKx)dB;5Vt?J-WhC2 z-Ftde6w6}#J+MuR8SHaPApxxT^;TTVTr4r`^o*Ku5I0Nrh^IfOkVaqFD1;h6Y_wn~ z#atL|vS7R73BED;h((5Zv`U@__syE|77@^oq6oUlNeQR2oyReexfUP)|?Ty3wo1(#ZFTWN8P&f!mA!} z*20ZHHn&9tE-YS6@kfu>7)vrQt~9a!pxOYahE!?n=5v8ROpq~Q^05Iy>5Y2Up9P3A z#B%LFm|g&;5h;(L(!hY%e}HIBR^g>R$Y_#VV7bkc+zxtD2>fh7}TZ60Ap7MuoMwQBMI4_cv677anm&+S1>&X1uUL}P8jsWV-U3^f|^!czq=FsD{3DDJuN0aDx_ig>H!*1;tU`eMG zM3^rgJox%YiL}l3_;6W`1U4^){HLG^;5sS}$&HlF{ErPud0Y)K)huY7HhJtn0>Owz z#`C|U8GWxl|M%o+aDcF3B$pN^p8%1<1nr;x3WFNIX0A+^ottp`?@2900^D_& z@jvF(tz9UFWpT|RQv3RE?S?4D9iG35zs%p?8yc+_nd#hb0dAvs^ab{!+oK=W&Yt3zwi>-S+E0spF_24)x2(6bZtf z8Zah||Wd430 z$=WkB62L6_Z63}h3ttTQF@7fIkvJSx)-l|aTu;L%z**(U=+W)q%eRc26e%AO6|t4< zW~NPErXr-Rs;YQ=Awmm|0xE7`Sd}dr^zalbTn=6x9^9vWyWq|5JXnImvnluua3`0a??YutCeB#&4}7q1sUqJN<003{Z=vDblhdAf;LkYSn(BOI-ntz)iL z|I}wcuWD{?uAZ@OsY79LyG=a%lDVp-HKKc|t*c1xJrzA-D1@d1RYF3V3N2Es$B!Qm ztuL)x^f`(-s3PnndBY50PuCj*GuALB%+qAU# z5fvyD$63W`-Y_PtUx0cUfwULHG7FEV6H>t&!T~{p?~)*cpLJxBsqE zx$kyMz~lBXGjjbRlw}dqPtJ*V+og8=Kw(ih9DSX5c8UUO%vr@-7Ku6{iDlj{JlWD6 z6L#oTnJoet4+qAnyIv2(hTS~iD8P^K2YG4#s_E2-o#Ul;JQ)v#Fz0M=5Cj34N8h#~ zkf@KUIQr16pOm2<*ZJ z&x?W19YX$Yc&G)J;fbgX@s5-hjYk%e$H@3~@B~FpmSLP7QIs{pdmaT0StjVZqOOGcu^m2q^8TK5-o$!>GZ)=WNr zL@P+}0z;(~KO(#VW`bv1Y7k zz+*ESi6kC+<$Su}AvM)TOOXc;*7Kq3s;m>?+OFFIqBy*#IX)=xHZ>Ses62j-u>+rF z2#WWx6y_Wy$nH1~6)v(7jp97bb@Do8MB40-!+S)Xzo9ne0vYs3mUHBRB#L91rihgD zRV^C1C)$qzE--pmC%UDirk-X>#)p8s2L8c}#ozGtMWQr8 zBdY4PEhW^aG_c=k_^}auL_+dw3OMCN9GP8GBoPyKR-i%}^ydowhXdYh)t->*YT&Dc zC)e+WzUAZ2WhW!O%W-PAKyc+?1x}l$H_B0`7t=HNC{qGoBB*yt*Hq7Dw|7A&vE;T* z0iLs=G(}tpSsfnsPF;;({2r(0b9Q}^Z>t}X!|Xb+v^YD`+tuYn9DJQn{AnAGC(tEC z1ov}KWngAhIJ9xMER=}j5wWiKjmIQ@`qG*Nj7akRcY!=ZU}LXo-~Yl5L-6fPoD#=k z;*A9>ZyECqMAKVLUZhTzSG~C z1=0q?#(m(@+jiN!h_DTk?Gr4#X>+)|7;#nq(5ZNZh#a)P#E?f8!chPO(vJ%Wg=@qZNFlPQvNR+LL z%?J<>^y_p^SI1Q-h~R7r@J&2KMc%#vG|#q_!@m*r0ivwe#kF0C<1T0(B5Dv1QCelJ z7skkcGY?VAdmbVJ+dfU5uR;N0M*-d(5M@-wx%kjNw&f||vrbUjIXTgKXXGo}{Wcd^ zTJlhHOU^vgwXa@>^Y4n6@*G*PNIz}VME%tU$%aM9`|UG{iwh!S=fdXk}X zDLc~h*;~CP8mjP+5SDNh!1_;PIM)okR;*|`*pAM*v~ky zRyDR^x5wp%-tqHo$D6{$GjD*uw^Su@0uT+gJzigw()>l!Z-C(jZD$)^I`nzTB#2vP zp_kv42dNFLV=F)RbHYoG0}r?jfW=dj0l`xRwqdpL7ZM(TZvyb^i~G|7*g=44S{gsP z>JIhD=9xIJtuMdr;3=NR*Rj?m3dFX}VK(I(Le5KqBZdjllQ{o$MYsZV*HWBU&xgUo zJmUdqgQIPvXn^jDvMC?qPVNNgjQ}kp+PzZ6X8E@Q^vKy@p7UG*l7c5^A1c#HPK&}m zv`8saUO=<0kGPQE#+gQP1JbVmc0G!ov=P7MVmzD0pVt*uuWJFW zMgcXh%QktaNGH{6x(LS~h9I&D1bP7B`>h~)34PCtff#TBlsDmW(n8u(7aAgjEXv&) zCsKebF(lJeDJ!AoNKh0augfGXu@$ZmWDFWczcuPZb4X9q{IfZG)%X!jK)l4^*N-bM z<;5L-UUK*>E6`8qNcV*xUs`B-lOGb*rUa^qv`pUs78O~3|27|`8qiO-mA_-R`&~?H zDgqFBwqaUnN|QjP*9X9&h|k&xSZYH3ROnhREU$ff{D|*hb3aN??Q1CRn$k&^0Jor# zmk2i(wM3X{>L%q*V3yxOXs-+0W&vbCGyN`rq4gr9*9=D z1bAr*fPB1Uw;4dZ%AF(t1a9=Y*e;X@qMd#hK&}GF=m9$k00}F10`*LS(gr*7(}4fU z^d__r_PRRTa0|mQ{i_{tJW=Al&M+_7BJoig2sOCl@QTN?j@g zdTZZ|>{@>bFZ`1tPr~(Dw|2M$)`oH+Zq_~=4qs$Cs8OtYRawO+R-FbDbXY$F`s&=? zpD#`Z{hSi8vbJV?ikvI&CDu)6a5C4HhuRN}$A%HZ!rE)sR+oCmBe{&}Pnj2g+%KN~ zVo>$tQ>FGcHhvPSE>D6GaHnj=uH~{u+%FC1a(anct(g%SKR1DqsYuN)^{qwjrs^O+87}#88!@{sL|8M2A2=IEO}$fM1V%0O^d?2l zWoLiOo@$kvuUo&KxmUX6c_>t$Wbr+|9Tolgjc7^+=HUI-r?eHgho%*jbI{3Sygea6WkvW8`%mM43q{$Bp~ zdS9?F?WXi;i0)6oD|$U%d#wC&7|PCQHtWx*OInmzjdLkC_Lm+3lN1NBuiUL(rq=G? zH+7QuQwc25d;5P%y3{!~)jIcM^sRO8sZ6?7PhLa~FHNVBmwukAtb07xWOqEX`miC8 zv+N1y1HS}`dbNDNp+#Y)LrT$sH2NbwTs3OrJCF{ z21Rf%I#?q3N*t`|dj-BjwblY{`j{-g)KQWRV z-qRBFuT}9O-M1Y$|E@)r5W`{3>mxMn4dhC^XmBR-!PgRry0e3A=zOALsyH+S&KA%F zF9h-zm}+rOqVMRyPdM|v^KKj58WN&&Na#>s&vBsfW7l;N$fkggT72o#vz~XnGqw)! zrw%HhxvmV8GQ}at9H6U0Ouhw?bhg2k@)@A=PB0Q7HgLgMLL2uWa(EXzJO;%QD*Q|P zx;L1=HU?xz=+i_{SOQNXV~d|EmJac-4`^@XM-+pAY0e7^+=$&^S<637AY7@#MQOik zX9BojJuYc||5K4ODYm1puNf{dBK6`XTmW*fvx7m-Xr2y)>pN49g8YbFK$qfNH9x{a z2Q*1OC)h(@;0NeBXLm+~3PYS%t$omLO~wbn8B-!ZYV`)7o0aO>D1>!{g5!ddM^2xV zu5dt8o;0r%cmU2A99bfx5j4eNjI$zE7ls&mM2??Z=*r?OXLPiP5j^<1{oF<@)S2}W z{Ml}%N)H}9aP|Af>19Zb=hR;O##<#oXIfUFkzH#%0CGaopj(rSTZh5uPyH$^eP|tg z>C&Y=cU$VRCU}Wi4@R9#)6p;=SGyYpR{B-aFpc-427-uIM%XDvg7A~Llu}&NO&c0 z!(y3&G7`YxEF|hx*;0xP=ihrA++S~)}`@IudRW=R1e|PyqAL|BG zQ*RC)hqmU98Ba-FFzT8Ub*$%u27vF~PS7M2_amjj>U!eL3fnJ+ki^t*RHfFc-B(~8 zLJlxPAO~Prqg(OxpHtAG+)FNp^3VoPaByr}PuoG?s$8ZHeJYGmDlNC|Jd6)YJ+4%^ z1Mg`9oXO{9+d~gin4Au+?E@G$Jg%!6g6oGUZ@I!pk%L}eKMyn%V}OV|5b+qu(^jUZt5i0L5@3#8=`h_*RHOTrK3x$ZIKt4+bveFLgRZJk zQY=Dng5OU2`T^*=x&7@Pf#1Vbs2tXT zLGkT)Y^#K$7pfL)5cxyp9D@nHYmZ_g7Keq2tl+L&-_=!cbgA!JFntICOR6$Xa7csk z0FX1!ItBBAXkxblK2wmZ4g)wTfII$pzb zt}u2+1GJd>Z!jp$4Nv%F|`)UtdO6!yYcWM{McKiCI7h1Ew?Jyo#DSfto9$Yod+F-VA;nlfw=X!7K zs-tiAnR7U(l9|y)hRPF$oM&D==qn?$1F9D1tZ-x)?%N>EmCf)$Qg#|Q6l`EfQ&RXa ztXzF!JZg=x)bV_^Vx>XE6v-6{*HFNFR+C$J3#LxQ8k8p09;;KSy*keqnmGG17c98n zlC8sdM+{zVG!zv+*7*8ZZ#M0b?7}0r(SNm|9 zGxSW0S2_XoB;#cq&}3QHt|AsbwZA+vlPy$8qyAAaQmXx23GFqM3dsvd_gs^ zZ!itsUll}|5&T>d8PSjNpzF@`t*vr-K(!4StBSw3sQUrmw)oe|$Jo;#g-0JEzO@&- zxGj#%%*>pA#M^|5v81-KpgB2?Cs@aXIDJMW>3>LDQw0Uug6FW*aC+&C5-Wyl z@&c-ulYmcLs{^a6Ht`nLvmLc_-M%icds7z`1g4a6R6(Qt3H3;dX^9)7J$EhnSf8w= z6ie)gn^9IU*md~2&eZ|L(824^g9oopxIgGdB7ea~YPO?u<21%~dA(cs(5|ZzSY>ct z-e}^WJ$p*_C}TNtU%=w0f`HZJClQ%}&0D7~oga^qjO0$mt^QyX!5|!Q7|GPRs=QyR zx?a(-^+4&7Gx@n5`oV$r-{1WnC{SQjO1l0}221imII3?+Nv*NO z&kY=^W50C8-|fb@tK^o%2TxV$AjodYphBcYg0Li%f*E@|%UKwEAs`E75wEJ8Fj5+UqIjAnJ^)f zIA(!RfS@h<Z4+6&h1fsQ9}k_3^C5%vq>G|R!U*uxB~j43{&V(cxorQo%sj= zpZ%J1t*)1A$gqha4i}$VsQ|!kRlleTv>ITv2=D0Dp0fkT)u@eb?<=c+)R5sBOZ+f) zc3cEx^zw-s*R+K=(N~+4Hzn$zYa#6 z6)KWs#uuq~WqHnY{9# zSPZ(-TMBfsoQaas`=iP!Aapz7!tJ|L@iey8RxB&z?q^-33=GkPN%M(#ON7%Ey+i2n zwC;EAav&m<-P84m4?=$nbEsPVwXT!|CLjnXWQFzQ;jgo;W*Qky>!~9P;4PO^Oysam zIEx^q9sSZ(c17xCK*?3wSAKUXKA&ynBF37Q>?F*BkQROYt|2urF&GY2w?Crl2urLJ z5-G7~J_hEg+pp-I!i+n+G}rxr=pS-y%Qd_c;?xzrJ?QbWw0AxoV09x->2Y{XN=rk= z(-4Uue9s^e$iqT!`z`YBop?ArAv6Lb z=&XBeD+_=uzh{t1Zh?KB7veKA9?gkSs>!LiHLC_3rAlfWQp%9=7|u)8nh!pE3p0K% z%d7qYHjUR4Rjy8yR49!3Lj2Pabr-_Y)olEN9$TWuKjhBTDMF??sWlc0mAkPZ@e!6a ztsV1u3NF8_^%Q})Ef6oviBYYQue?{00DGu2)CcBSmK2p}y}MT7m0k5(W6p#QTT9aR zrw{O24H?&CxaSj2e>)3x8m#@4Y?ASI4H;SVy zd$!U{?;DLSg{C0l&nl-4knctF4e2NM#}J(?ou++a!w#msBSWC?ZF2JMu1G|Ie$fH zDo`BruTrek-8IsGvdVoviab=A68ilS0xv5CLA;0LlpsgIt0|lYah8Gd##y+FyQCmg z>M++Iua{uyd2Xx2V!NfpA(uRbO$Y0WdJUJYxeA*J*qLVHP52uk_&ma8`FtkMWcPZ0 z_P>wEL9vpxsgcBYLjLie^&b)etWaKwu-0X(7+Mk>TwPt{ZElg-GRM{W4G@K8Cu9Fi zumu3@_A4=#e1nRv8^OWmhzri{Rp^TcAuIu>rv3Z|tf`LjDzA)w0o1+*}UN{#|@oM9J4Y?lESZ z_}>Z#-f9Vgw_4`mtrnEj&%N2w`I}OV$n{n*%}@4P7HouN#2wX`us@acHIU%;?Aw`` z@!OvKR#M&k@t!bs`3nlcD+O0Gm20lKd^bEv7%Cwz2w@?T)8E8z(Dw)zj(H!R*3x`E z5QZ9xz}UMB*LI1st|gq$*iH?3mk!hIGqBQl7A;sJ#S$d%y{tyvmzDkxAEgVZ`Q2d% zin18~?W;%rWB}w3pcZn2v&lMqoa{9Dw8dSd#}7y?Yp^#saRygE~Q&}Yh8LlSy~X3eV;4>#_FmvSJ^ zm?NO3wB-)m*cAq4WezQ)*}5ZlBqU0R!<3-!eLhi#*vodw{?pJr!04~e5BBQRO(t-@ zr+RSeW{U$uOP{YUy5FC5uOln8`u z)5*XswN&JII*F#ZG^3v6B5)Y1ESNc)WE%PF12V2OeWgoNtT3tW-~GgHE1ZEr zU(Lmk7USU>W$PaAhKF>)yXtGl8h=G@(ET=UtctU_QUA3slsl&SWt^rnGX1jlHfr_P zJH|*%*o0z*J|b4gb;XU?HzmIkKq@!1W^Ro$a(CHKYR`2$>f)?OIV~_}5Ndk4+p6Uu z9phVh*qZgpfa^*;fBro3A9Ny-Y1p6e`yw?1JrKuep^cKJ3=Is_FX+5TiMSYLM7nn$I!ax& z7H*sLthe6SYcXzr+Ev3d)8AI!tCl_}ordx?yMy#`K$}DwtLRt`U*2@I13FHHpoIdx zsn#%Ox)P^&>TW2`;NtUzAL&=tB3_n-Rn~UTjGxR~SJJBBv+Cy`B&|+xO^, line width = 0.5mm] (1, 0) -- (1, -0.5) node[below] {$m_1$}; + %\draw[->, line width = 0.5mm, dashed] (1, 0) -- (1, 0.5) node[above] {$-m_1$}; + + \fill[color = red] (1, 0) circle[radius=0.025]; + \end{tikzpicture} +\end{center} +The pin exerts an opposing force on the mass at the same point, and the system thus stays still. + + +\remark{} +Forces, distances, and torques in this handout will be provided in arbitrary (though consistent) units. \par +We have no need for physical units in this handout. + +\example{} +Now attach this mass to a massless rod and try to balance the resulting system. \par +As you might expect, it is not stable: the rod pivots and falls down. +\begin{center} + \begin{tikzpicture}[scale=2] + \fill[color = black] (-0.3, 0.0) circle[radius=0.1]; + \node[above] at (-0.3, 0.1) {$m_1$}; + \draw[-, line width = 0.5mm] (-0.8, 0) -- (0.5, 0); + + \draw[line width = 0.25mm, pattern=north west lines] (0, 0) -- (-0.15, -0.3) -- (0.15, -0.3) -- cycle; + + + \draw[color = black, opacity = 0.5] (1.2, 0.0) circle[radius=0.1]; + \draw[-, line width = 0.5mm, opacity = 0.5] (0.7, 0) -- (1.9, 0); + + \draw[line width = 0.25mm, pattern=north west lines, opacity = 0.5] (1.5, 0) -- (1.35, -0.3) -- (1.65, -0.3) -- cycle; + + + \draw[->, line width = 0.5mm] (1.2, 0) -- (1.2, -0.5) node[below] {$m_1$}; + %\draw[->, line width = 0.5mm, dashed] (1.5, 0) -- (1.5, 0.5) node[above] {$f_p$}; + \end{tikzpicture} +\end{center} +This is because the force $m_1$ is offset from the pivot (i.e, the tip of the pin). \par +It therefore exerts a \textit{torque} on the mass-rod system, causing it to rotate and fall. + +\pagebreak + + +\definition{Torque} +Consider a rod on a single pivot point. +If a force with magnitude $m_1$ is applied at an offset $d$ from the pivot point, +the system experiences a \textit{torque} with magnitude $m_1 \times d$. +\begin{center} + \begin{tikzpicture}[scale=2] + \draw[-, line width = 0.5mm] (-1.2, 0) -- (0.5, 0); + \draw[line width = 0.25mm, pattern=north west lines] (0, 0) -- (-0.15, -0.3) -- (0.15, -0.3) -- cycle; + + \draw[->, line width = 0.5mm, dashed] (-0.8, 0) -- (-0.8, -0.5) node[below] {$m_1$}; + \fill[color = red] (-0.8, 0.0) circle[radius=0.05]; + + + \draw[-, line width = 0.3mm, double] (-0.8, 0.1) -- (-0.8, 0.2) -- (0, 0.2) node [midway, above] {$d$} -- (0, 0.1); + \end{tikzpicture} +\end{center} + +We'll say that a \textit{positive torque} results in \textit{clockwise} rotation, +and a \textit{negative torque} results in a \textit{counterclockwise rotation}. +As stated in \ref{fakeunits}, torque is given in arbitrary \say{torque units} +consistent with our units of distance and force. + +\vspace{2mm} + +% I believe the convention used in physics is opposite ours, but that's fine. +% Positive = clockwise is more intuitive given our setup, +% and we only use torque to define CoM anyway. +Look at the diagram above and convince yourself that this convention makes sense: +\begin{itemize} + \item $m_1$ is positive \note{(masses are usually positive)} + \item $d$ is negative \note{($m_1$ is \textit{behind} the pivot)} + \item therefore, $m_1 \times d$ is negative. +\end{itemize} + + +\definition{Center of mass} +The \textit{center of mass} of a physical system is the point at which one can place a pivot \par +so that the total torque the system experiences is 0. \par +\note{In other words, it is the point at which the system may be balanced on a pin.} + + +\problem{} +Consider the following physical system: +we have a massless rod of length $1$, with a mass of size 3 at position $0$ +and a mass of size $1$ at position $1$. +Find the position of this system's center of mass. \par + +\begin{center} + \begin{tikzpicture}[scale=2] + \draw[line width = 0.25mm, pattern=north west lines] (0, 0) -- (-0.15, -0.3) -- (0.15, -0.3) -- cycle; + + \draw[-, line width = 0.5mm] (-0.5, 0) -- (1.5, 0); + + + \fill[color = black] (-0.5, 0) circle[radius=0.1]; + \node[above] at (-0.5, 0.2) {$3$}; + + \fill[color = black] (1.5, 0) circle[radius=0.08]; + \node[above] at (1.5, 0.2) {$1$}; + \end{tikzpicture} +\end{center} + +\vfill + +\problem{} +Do the same for the following system, where $m_1$ and $m_2$ are arbitrary masses. + +\begin{center} + \begin{tikzpicture}[scale=2] + \draw[line width = 0.25mm, pattern=north west lines] (0.7, 0) -- (0.55, -0.3) -- (0.85, -0.3) -- cycle; + + \draw[-, line width = 0.5mm] (-0.5, 0) -- (1.5, 0); + + + \fill[color = black] (-0.5, 0) circle[radius=0.1]; + \node[above] at (-0.5, 0.2) {$m_1$}; + + \fill[color = black] (1.5, 0) circle[radius=0.08]; + \node[above] at (1.5, 0.2) {$m_2$}; + \end{tikzpicture} +\end{center} + +\vfill +\pagebreak + +\problem{} +Consider a massless horizontal rod of infinite length. \par +Attach $n$ masses $m_1, m_2, ..., m_n$ to it, placing each $m_i$ at position $x_i$. \par +Find the resulting system's center of mass. + +\vfill + +\problem{} +Extend \ref{massline} into two dimensions: \par +Place $n$ masses $m_1, m_2, ..., m_n$ at positions $(x_1, y_1),~ (x_2, y_2),~ (x_3, y_3)$ +on a massless plane. \par +Find the coordinates of the resulting system's center of mass. \par +\hint{If a plane balances on a pin, it does not tilt in the $x$ or $y$ direction.} + +\vfill +\pagebreak \ No newline at end of file diff --git a/Advanced/COM/parts/1 continuous.tex b/Advanced/COM/parts/1 continuous.tex new file mode 100644 index 0000000..591c1ba --- /dev/null +++ b/Advanced/COM/parts/1 continuous.tex @@ -0,0 +1,64 @@ +\section{Continuous mass} + +Now let's extend this idea to a \textit{continuous distribution} of masses rather than discrete point masses. This isn't so different; a continuous distribution of mass is really just a lot of point-masses, only that there are so many of them so close together that you can't even count them\footnote{For example, your pencil might seem like a continuous distribution of mass, but it's really just a whole lot of atoms.}. In general, finding the CoM requires integral calculus, but not always...\footnote{Many of the following problems can be solved with integration even though you're meant to solve them without it. But remember, in math, whenever you accomplish the same task two different ways, that really means that they're somehow the same thing.} + + +\problem{} +You are given a cardboard cutout of Figure \ref{seahorse} and some office supplies. How might you determine the CoM? Does your strategy also work in 3D? + +\vfill + +\problem{} +Where is the CoM of a right isosceles triangle? What about any isosceles triangle? + +\vfill + +\problem{} +How can you easily find the CoM of any triangle? Why does this work? + +\vfill + +\pagebreak + + +\problem{} +Consider Figure \ref{soda} depicting a simplified soda can. +If you leave just the right amount, +you can get it to balance on the beveled edge, as seen in Figure +\ref{soda filled}. + +\begin{figure}[htp] +\centering +\begin{minipage}{0.5\textwidth} + \centering + \includegraphics[width=0.6\linewidth]{img/soda.png} + \caption{} + \label{soda} +\end{minipage}\hfill +\begin{minipage}{0.5\textwidth} + \centering + \includegraphics[width=0.6 \linewidth]{img/soda_filled.png} + \caption{} + \label{soda filled} +\end{minipage} +\end{figure} + +\problem{} +See Figure \ref{soda filled}. Let's take the can to be massless and intially empty. Let's also assume that we live in two dimensions. We start slowly filling it up with soda to a vertical height $h$. What is $h$ just before the can tips over? + +\vfill + +\problem{}<3D soda> +Think about how you might approach this problem in 3D. Does $h$ become larger or smaller? + +\vfill + +\pagebreak + +So far we've made the assumption our shapes have mass that is \textit{uniformly distributed}. But that doesn't have to be the case. + +\problem{} +A mathemagical wizard will give you his staff if you can balance it horizontally on your finger. The strange magical staff has unit length and it's mass is distributed in a very special way. It's density decreases linearly from $\lambda_0$ at one end to $0$ at the other. Where is the staff's balancing point? + +\vfill +\pagebreak diff --git a/Advanced/COM/parts/2 pappus.tex b/Advanced/COM/parts/2 pappus.tex new file mode 100644 index 0000000..2568be6 --- /dev/null +++ b/Advanced/COM/parts/2 pappus.tex @@ -0,0 +1,57 @@ +\section{Pappus's Centroid Theorem} + +\begin{figure}[htp] + \centering + \includegraphics[width=0.6\linewidth]{img/pappus_1.png} + \caption{} + \label{pappus1} +\end{figure} + +\textit{Centroids} are closely related to, and often synonymous with, centres of mass. A centroid is the geometric centre of an object, regardless of the mass distribution. Thus, the centroid and centre of mass coincide when the mass is uniformly distributed. + +Figure \ref{pappus1} depicts three different surfaces constructed by revolving a line segment (in red) about a central axis. These are often called \textit{surfaces of revolution}. + +\textit{Pappus's First Centroid Theorem} allows you to determine the area of a surface of revolution using information about the line segment and the axis of rotation. + + Can you intuitively come up with Pappus's First Centroid Theorem for yourself? Figure \ref{pappus1} is very helpful. It may also help to draw from surface area formulae you already know. What limitations are there on the theorem? + +\vfill + +\pagebreak + +\textit{Pappus's Second Centroid Theorem} simply extends this concept to \textit{solids of revolution}, which are exactly what you think they are. + + Now that you've done the first theorem, what do you think Pappus's Second Centroid Theorem states? + +\vfill + + The centroid of a semi-circular line segment is already given in Figure \ref{pappus1}, but what about the centroid of a filled semi-circle? (Hint: For a sphere of radius $r$, $V=\frac{4}{3}\pi r^3$) + +\begin{figure}[htp] + \centering + \includegraphics[width=0.4\linewidth]{img/arc.png} + \caption{} + \label{arc} +\end{figure} + +\label{arc centroid} Given arc $AB$ with radius $r$ and subtended by $2\alpha$, determine $OG$, the distance from the centre of the circle to the centroid of the arc. + +\vfill + +\pagebreak + + Using your answers from Problem \ref{isosceles centroid} and Problem \ref{arc centroid}. Where is the centroid of the \textit{sector} of the circle in Figure \ref{arc}. (Hint: Cut it up.) + +\vfill + + Seeing your success with his linear staff, the wizard challenges you with another magical staff to balance. It looks identical to the first one, but you're told that the density decreases from $\lambda_0$ to $0$ according to the function $\lambda(x) = \lambda_0\sqrt{1-x^2}$. + +\vfill + + Infinitely many masses $m_i$ are placed at $x_i$ along the positive $x$-axis, starting with $m_0 = 1$ placed at $x_0 = 1$. Each successive mass is placed twice as far from the origin compared to the previous one. But also, each successive mass has a quarter the weight of the previous one. Find the CoM if it exists. + +\vfill + + (Bonus) Try to actually find $h$ from Problem \ref{3D soda}. Good luck. + +%\item (Bonus, not related to the packet) Spongebob, Patrick, and Squidward are all hiding from the Sea Bear. Initially, Spongebob and Patrick are keeping watch 100 yards apart with Squidward halfway in between them. When Spongebob gets scared, he runs to hide halfway between Squidward and Patrick. Then Patrick, not wanting to be the farthest from the centre, runs to be halfway between Squidward and Patrick. Squidward, seeing this, quickly finds the new halfway point between Spongebob and Patrick. This pattern keeps repeating until all three of them are pointlessly clambering on top of each other. Where do they end up relative to their initial positions?