107 lines
2.6 KiB
TeX
107 lines
2.6 KiB
TeX
|
\section{Introduction}
|
||
|
|
||
|
\definition{}
|
||
|
Say we have a sequence $a_0, a_1, a_2, ...$. \par
|
||
|
The \textit{generating function} of this sequence is defined as follows:
|
||
|
\begin{equation*}
|
||
|
A(x) = \sum_{n=0}^\infty a_nx^n = a_0 + a_1x + a_2x^2 + a_3x+3 + ...
|
||
|
\end{equation*}
|
||
|
|
||
|
Under some circumstances, this sum does not converge, and thus $A(x)$ is undefined. \par
|
||
|
However, we can still manipulate this infinite sum to get useful results even if $A(x)$
|
||
|
diverges.
|
||
|
|
||
|
\problem{}
|
||
|
Let $A(x)$ be the generating function of the sequence $a_n$, \par
|
||
|
and let $B(x)$ be the generating function of the sequence $b_n$. \par
|
||
|
Find the sequences that correspond to the following generating functions:
|
||
|
\begin{itemize}[itemsep=2mm]
|
||
|
\item $cA(x)$
|
||
|
\item $xA(x)$
|
||
|
\item $A(x) + B(x)$
|
||
|
\item $A(x)B(x)$
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{solution}
|
||
|
\begin{itemize}[itemsep=2mm]
|
||
|
\item $cA(x)$ corresponds to $ca_n$
|
||
|
\item $xA(x)$ corresponds to $0, a_0, a_1, ...$
|
||
|
\item $A(x) + B(x)$ corresponds to $a_n+b_n$
|
||
|
\item $A(x)B(x)$ is $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + ...$ \par
|
||
|
Which corresponds to $c_n = \sum_{k=0}^n a_kb_{n-k}$
|
||
|
\end{itemize}
|
||
|
\end{solution}
|
||
|
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
\problem{}<xminusone>
|
||
|
Assuming $|x| < 1$, show that
|
||
|
\begin{equation*}
|
||
|
\frac{1}{1-x} = 1 + x + x^2 + x^3 + ...
|
||
|
\end{equation*}
|
||
|
|
||
|
\begin{solution}
|
||
|
Let $S = 1 + x + x^2 + ...$ \par
|
||
|
Then, $xS = x + x^2 + x^3 + ...$ \par
|
||
|
|
||
|
\vspace{2mm}
|
||
|
|
||
|
So, $xS = S - 1$ \par
|
||
|
and $1 = S - xS = S(1 - x)$ \par
|
||
|
and $S = \frac{1}{1-x}$.
|
||
|
\end{solution}
|
||
|
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
\problem{}
|
||
|
Let $A(x)$ be the generating function of the sequence $a_n$. \par
|
||
|
Find the sequence that corresponds to the generating function $\frac{A(x)}{1-x}$
|
||
|
|
||
|
\begin{solution}
|
||
|
\begin{align*}
|
||
|
\frac{A(x)}{1-x}
|
||
|
&=~ A(x)(1 + x + x^2 + ...) \\
|
||
|
&=~ (a_0 + a_1x + a_2x^2 + ...)(1 + x + x^2 + ...)\\
|
||
|
&=~ a_0 + (a_0 + a_1)x + (a_0 + a_1 + a_2)x^2 + ...
|
||
|
\end{align*}
|
||
|
|
||
|
Which corresponds to the sequence $c_n = \sum_{k=0}^n a_k$
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Find short expressions for the generating functions for the following sequences:
|
||
|
\begin{itemize}
|
||
|
\item $1, 0, 1, 0, ...$
|
||
|
\item $1, 2, 4, 8, 16, ...$
|
||
|
\item $1, 2, 3, 4, 5, ...$
|
||
|
\end{itemize}
|
||
|
|
||
|
\begin{solution}
|
||
|
\begin{itemize}[itemsep=2mm]
|
||
|
\item $1, 0, 1, 0, ...$ corresponds to $1 + x^2 + x^4 + ...$. \par
|
||
|
By \ref{xminusone}, this is $\frac{1}{1-x^2}$.
|
||
|
|
||
|
\item $1, 2, 4, 8, 16, ...$ corresponds to $1 + 2x + (2x)^2 + ...$. \par
|
||
|
By \ref{xminusone}, this is $\frac{1}{1-2x}$.
|
||
|
|
||
|
\item $1, 2, 3, 4, 5, ...$ corresponds to $1 + 2x + 3x^2 + 4x^3 + ...$.\par
|
||
|
This is equal to $(1 + x + x^2 + ...)^2$, and thus is $\left(\frac{1}{1-x}\right)^2$
|
||
|
\end{itemize}
|
||
|
\end{solution}
|
||
|
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\pagebreak
|