2022-11-21 22:01:21 -08:00
\section { Review}
\definition { }
A \textit { graph} consists of a set of \textit { nodes} $ \{ A, B, ... \} $ and a set of edges $ \{ ( A,B ) , ( A,C ) , ... \} $ connecting them.
2023-01-08 09:10:54 -08:00
A \textit { directed graph} is a graph where edges have direction. In such a graph, edges $ ( A, B ) $ and $ ( B, A ) $ are distinct.
2022-11-21 22:01:21 -08:00
A \textit { weighted graph} is a graph that features weights on its edges. \\
A weighted directed graph is shown below.
\begin { center}
\begin { tikzpicture} [node distance = 20mm]
% Nodes
\begin { scope}
\node [main] (A) { $ A $ } ;
\node [main] (B) [below right of = A] { $ B $ } ;
\node [main] (C) [below left of = A] { $ C $ } ;
\end { scope}
% Edges
\draw [->]
(A) edge[bend right] node[label] { $ 4 $ } (B)
(B) edge node[label] { $ 2 $ } (C)
(C) edge node[label] { $ 2 $ } (A)
(B) edge[bend right] node[label] { $ 1 $ } (A)
;
\end { tikzpicture}
\end { center}
\vfill
\definition { }
2023-01-08 09:10:54 -08:00
We say a graph is \textit { bipartite} if its nodes can be split into two groups $ L $ and $ R $ , where no two nodes in the same group are connected by an edge: \\
2022-11-21 22:01:21 -08:00
\begin { center}
\begin { tikzpicture}
% Nodes
\begin { scope}
\node [main] (A) at (0mm, 0mm) { $ A $ } ;
\node [main] (B) at (0mm, -10mm) { $ B $ } ;
\node [main] (C) at (0mm, -20mm) { $ C $ } ;
2023-01-08 09:10:54 -08:00
\node [main, hatch] (D) at (20mm, 0mm) { $ D $ } ;
\node [main, hatch] (E) at (20mm, -10mm) { $ E $ } ;
\node [main, hatch] (F) at (20mm, -20mm) { $ F $ } ;
2022-11-21 22:01:21 -08:00
\end { scope}
% Edges
\draw
(A) edge (D)
(A) edge (E)
(B) edge (F)
(C) edge (E)
(C) edge (D)
;
\end { tikzpicture}
\end { center}
\vfill
\pagebreak