2023-04-09 10:58:49 -07:00
\section { Notation and Terminology}
\definition { }
\begin { itemize}
\item $ \mathbb { R } $ is the set of all real numbers.
\item $ \mathbb { R } ^ + $ is the set of positive real numbers. Zero is not positive.
\item $ \mathbb { R } ^ + _ 0 $ is the set of positive real numbers and zero.
\end { itemize}
2023-04-20 21:11:28 -07:00
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $ \mathbb { R } ^ + $ may or may not include zero. We will use the definitions above.
2023-04-09 10:58:49 -07:00
\definition { }
Consider two sets $ A $ and $ B $ . The set $ A \times B $ consists of all tuples $ ( a, b ) $ where $ a \in A $ and $ b \in B $ . \\
For example, $ \{ 1 , 2 , 3 \} \times \{ \heartsuit , \star \} = \{ ( 1 , \heartsuit ) , ( 1 , \star ) , ( 2 , \heartsuit ) , ( 2 , \star ) , ( 3 , \heartsuit ) , ( 3 , \star ) \} $ \\
This is called the \textit { cartesian product} .
\vspace { 4mm}
You can think of this as placing the two sets \say { perpendicular} to one another:
\begin { center}
\begin { tikzpicture} [
scale=1,
bullet/.style={ circle,inner sep=1.5pt,fill}
]
\draw [->] (-0.2,0) -- (4,0) node[right]{ $ A $ } ;
\draw [->] (0,-0.2) -- (0,3) node[above]{ $ B $ } ;
\draw (1,0.1) -- ++ (0,-0.2) node[below]{ $ 1 $ } ;
\draw (2,0.1) -- ++ (0,-0.2) node[below]{ $ 2 $ } ;
\draw (3,0.1) -- ++ (0,-0.2) node[below]{ $ 3 $ } ;
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{ $ \heartsuit $ } ;
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{ $ \star $ } ;
\node [bullet] at (1, 1){ } ;
\node [bullet] at (2, 1) { } ;
\node [bullet] at (3, 1) { } ;
\node [bullet] at (1, 2) { } ;
\node [bullet] at (2, 2) { } ;
\node [bullet] at (3, 2) { } ;
\draw [rounded corners] (0.5, 0.5) rectangle (3.5, 2.5) { } ;
\node [above] at (2, 2.5) { $ A \times B $ } ;
\end { tikzpicture}
\end { center}
\problem { }
Let $ A = \{ 0 , 1 \} \times \{ 0 , 1 \} $ \\
Let $ B = \{ a, b \} $ \\
What is $ A \times B $ ?
\vfill
\problem { }
What is $ \mathbb { R } \times \mathbb { R } $ ? \\
\hint { Use the \say { perpendicular} analogy}
\vfill
\pagebreak
\definition { }
$ \mathbb { R } ^ n $ is the set of $ n $ -tuples of real numbers. \\
2023-04-20 21:11:28 -07:00
In English, this means that an element of $ \mathbb { R } ^ n $ is a list of $ n $ real numbers: \\
2023-04-09 10:58:49 -07:00
\vspace { 4mm}
Elements of $ \mathbb { R } ^ 2 $ look like $ ( a, b ) $ , where $ a, b \in \mathbb { R } $ . \hfill \note { \textit { Note:} $ \mathbb { R } ^ 2 $ is pronounced \say { arrgh-two.} }
2023-04-20 21:11:28 -07:00
Elements of $ \mathbb { R } ^ 5 $ look like $ ( a _ 1 , a _ 2 , a _ 3 , a _ 4 , a _ 5 ) $ , where $ a _ n \in \mathbb { R } $ . \\
2023-04-09 10:58:49 -07:00
$ \mathbb { R } ^ 1 $ and $ \mathbb { R } $ are identical.
\vspace { 4mm}
Intuitively, $ \mathbb { R } ^ 2 $ forms a two-dimensional plane, and $ \mathbb { R } ^ 3 $ forms a three-dimensional space. \\
$ \mathbb { R } ^ n $ is hard to visualize when $ n \geq 4 $ , but you are welcome to try.
\problem { }
Convince yourself that $ \mathbb { R } \times \mathbb { R } $ is $ \mathbb { R } ^ 2 $ . \\
What is $ \mathbb { R } ^ 2 \times \mathbb { R } $ ?
\vfill
\pagebreak