133 lines
3.1 KiB
TeX
Raw Normal View History

2023-06-29 14:51:58 -07:00
\section{Graphs}
\definition{}
A \textit{set} is an unordered collection of objects. \par
This means that the sets $\{1, 2, 3\}$ and $\{3, 2, 1\}$ are identical.
\definition{}
A \textit{graph} $G = (N, E)$ consists of two sets: a set of \textit{vertices} $V$, and a set of \textit{edges} $E$. \par
2023-12-09 18:17:22 -08:00
Vertices are simply named \say{points,} and edges are connections between pairs of vertices. \par
2023-06-29 14:51:58 -07:00
In the graph below, $V = \{a, b, c, d\}$ and $E = \{~ (a,b),~ (a,c),~ (a,d),~ (c,d) ~\}$.
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[main] (a) at (0, 0) {$a$};
\node[main] (b) at (0, -1) {$b$};
\node[main] (c) at (2, -1) {$c$};
\node[main] (d) at (4, 0) {$d$};
\end{scope}
\draw[-]
(a) edge (b)
(a) edge (c)
(a) edge (d)
(c) edge (d)
;
\end{tikzpicture}
\end{center}
Vertices are also sometimes called \textit{nodes}. You'll see both terms in this handout. \par
\problem{}
Draw the graph defined by the following vertex and edge sets: \par
$V = \{A,B,C,D,E\}$ \par
$E = \{~ (A,B),~ (A,C),~ (A,D),~ (A,E),~ (B,C),~ (C,D),~ (D,E) ~\}$\par
\vfill
We can use graphs to solve many different kinds of problems. \par
Most situations that involve some kind of \say{relation} between elements can be represented by a graph.
\pagebreak
Graphs are fully defined by their vertices and edges. The exact position of each vertex and edge doesn't matter---only which nodes are connected to each other. The same graph can be drawn in many different ways.
\problem{}
Show that the graphs below are equivalent by comparing the sets of their vertices and edges.
\begin{center}
\adjustbox{valign=c}{
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[main] (a) at (0, 0) {$a$};
\node[main] (b) at (2, 0) {$b$};
\node[main] (c) at (2, -2) {$c$};
\node[main] (d) at (0, -2) {$d$};
\end{scope}
\draw[-]
(a) edge (b)
(b) edge (c)
(c) edge (d)
(d) edge (a)
(a) edge (c)
(b) edge (d)
;
\end{tikzpicture}
}
\hspace{20mm}
\adjustbox{valign=c}{
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[main] (a) at (0, 0) {$a$};
\node[main] (b) at (-2, -2) {$b$};
\node[main] (c) at (0, -2) {$c$};
\node[main] (d) at (2, -2) {$d$};
\end{scope}
\draw[-]
(a) edge (b)
(b) edge (c)
(c) edge (d)
(d) edge (a)
(a) edge (c)
(b) edge[out=270, in=270, looseness=1] (d)
;
\end{tikzpicture}
}
\end{center}
\vfill
\pagebreak
\definition{}
The degree $D(v)$ of a vertex $v$ of a graph
is the number of the edges of the graph
connected to that vertex.
\theorem{Handshake Lemma}<handshake>
In any graph, the sum of the degrees of its vertices equals twice the number of the edges.
\problem{}
Prove \ref{handshake}.
\vfill
\problem{}
Show that all graphs have an even number number of vertices with odd degree.
\vfill
\problem{}
One girl tells another, \say{There are 25 kids
in my class. Isn't it funny that each of them
has 5 friends in the class?} \say{This cannot be true,} immediately replies the other girl.
How did she know?
2023-07-09 21:37:57 -07:00
\vfill
\problem{}
Say $G$ is a graph with nine vertices. Show that $G$ has at least five vertices of degree six or at least six vertices of degree 5.
2023-06-29 14:51:58 -07:00
\vfill
\pagebreak