2024-01-27 13:16:52 -08:00
|
|
|
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
|
|
|
%
|
|
|
|
% This program is free software: you can redistribute it and/or modify
|
|
|
|
% it under the terms of the GNU General Public License as published by
|
|
|
|
% the Free Software Foundation, either version 3 of the License, or
|
|
|
|
% (at your option) any later version.
|
|
|
|
%
|
|
|
|
% You may have received a copy of the GNU General Public License
|
|
|
|
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
%
|
|
|
|
%
|
|
|
|
%
|
|
|
|
% If you edit this, please give credit!
|
|
|
|
% Quality handouts take time to make.
|
|
|
|
|
|
|
|
% use the [nosolutions] flag to hide solutions,
|
|
|
|
% use the [solutions] flag to show solutions.
|
|
|
|
\documentclass[
|
|
|
|
solutions,
|
2024-02-07 11:26:40 -08:00
|
|
|
singlenumbering
|
2024-01-27 13:16:52 -08:00
|
|
|
]{../../resources/ormc_handout}
|
|
|
|
\usepackage{../../resources/macros}
|
|
|
|
|
|
|
|
\def\ket#1{\left|#1\right\rangle}
|
|
|
|
\def\bra#1{\left\langle#1\right|}
|
|
|
|
|
|
|
|
\usepackage{units}
|
|
|
|
\input{tikzset}
|
|
|
|
|
|
|
|
|
|
|
|
\uptitlel{Advanced 2}
|
|
|
|
\uptitler{Winter 2022}
|
2024-02-10 21:05:38 -08:00
|
|
|
\title{Intro to Quantum Computing I}
|
2024-01-27 13:16:52 -08:00
|
|
|
\subtitle{Prepared by \githref{Mark} on \today{}}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\maketitle
|
|
|
|
|
2024-02-10 21:05:38 -08:00
|
|
|
\input{parts/01 bits}
|
2024-02-15 16:23:25 -08:00
|
|
|
\input{parts/02 qubit}
|
|
|
|
\input{parts/03 two qubits}
|
|
|
|
\input{parts/04 logic gates}
|
|
|
|
\input{parts/05 quantum gates}
|
2024-01-31 09:23:08 -08:00
|
|
|
|
2024-02-15 16:23:25 -08:00
|
|
|
\section{Bonus Problems (Putnam)}
|
2024-02-06 16:49:40 -08:00
|
|
|
|
2024-02-15 16:23:25 -08:00
|
|
|
\problem{}
|
|
|
|
Suppose $A$ is a real, square matrix that satisfies $A^3 = A + I$. \par
|
|
|
|
Show that $\text{det}(A)$ is positive.
|
2024-02-06 16:49:40 -08:00
|
|
|
|
2024-02-15 16:23:25 -08:00
|
|
|
\vfill
|
2024-02-06 16:49:40 -08:00
|
|
|
|
2024-02-15 16:23:25 -08:00
|
|
|
\problem{}
|
|
|
|
Suppose $A, B$ are $2 \times 2$ complex matrices satisfying $AB = BA$, \par
|
|
|
|
and assume $A$ is not of the form $aI$ for some complex $a$. \par
|
|
|
|
Show that $B = xA + yI$ for complex $x$ and $y$.
|
2024-02-06 16:49:40 -08:00
|
|
|
|
2024-02-15 16:23:25 -08:00
|
|
|
\vfill
|
2024-02-06 16:49:40 -08:00
|
|
|
|
2024-02-15 16:23:25 -08:00
|
|
|
\problem{}
|
|
|
|
Is there an infinite sequence of real numbers $a_1, a_2, ...$ so that \par
|
|
|
|
$a_1^m + a_2^m + ... = m$ for every positive integer $m$?
|
2024-02-06 16:49:40 -08:00
|
|
|
|
2024-02-15 16:23:25 -08:00
|
|
|
\vfill
|
2024-02-07 11:26:40 -08:00
|
|
|
\end{document}
|