105 lines
2.6 KiB
TeX
Raw Normal View History

2023-05-04 11:24:40 -07:00
\section{Logarithms Base 10}
When we take a logarithm, the resulting number has two parts: the \textit{characteristic} and the \textit{mantissa}. \\
The characteristic is the integral (whole-numbered) part of the answer, and the mantissa is the fractional part (what comes after the decimal). \\
\medskip
For example, $\log_{10}{18} = 1.255$, so in this case the characteristic is $1$ and the mantissa is $0.255$.
\problem{}
Approximate the following logs without a slide rule. Find the exact characteristic, and approximate the mantissa.
\begin{enumerate}
\item $\log_{10}{20}$
\item $\log_{2}{18}$
\end{enumerate}
\begin{solution}
\begin{enumerate}
\item $\log_{10}{20} = 1.30$
\item $\log_{2}{18} = 4.17$
\end{enumerate}
\end{solution}
\vfill
Now, find the L scale on your slide rule. As you can see on the right, its generating function is $\log_{10}{x}$.
\problem{}
Compute the following logarithms using your slide rule. \\
You'll have to find the characteristic yourself, but your L scale will give you the mantissa. \\
Don't forget your log identities!
\begin{enumerate}
\item $\log_{10}{20}$
\item $\log_{10}{15}$
\item $\log_{10}{150}$
\item $\log_{10}{0.024}$
\end{enumerate}
\begin{solution}
Careful with number 4.
\begin{enumerate}
\item $\log_{10}{20} = 1.30$
\item $\log_{10}{15} = 1.176$
\item $\log_{10}{150} = 2.176$
\item $\log_{10}{0.024} = -1.6197$
\end{enumerate}
\end{solution}
\vfill
\pagebreak
%\problem{}
%Find the following.
%\begin{enumerate}[itemsep=2mm]
% \item $\frac{118 \times 0.51}{6.6}$
% \item $\sqrt{33.8} \times \sqrt[3]{226}$
% \item $\frac{\sqrt{152}}{\sqrt[3]{4.95}}$
% \item $\frac{\sqrt{96 \times 250}}{\sqrt{7 \times 0.88}}$
% \item The area of a circle with radius $1.47$
% \item The circumference of a circle with radius $31.4$
% \item The radius of a circle with area $6\pi$
% \item $\log_{10}{17.38}$
%\end{enumerate}
%\vfill
%\pagebreak
\section{Logarithms in Any Base}
Our slide rule easily computes logarithms in base 10, but we can also use it to find logarithms in \textit{any} base.
\proposition{}<logcob>
This is usually called the \textit{change-of-base} formula:
\[
\log_{b}{a} = \frac{\log_c{a}}{\log_c{b}}
\]
\problem{}
Using log identities, prove \ref{logcob}.
\vfill
\problem{}
Approximate the following:
\begin{enumerate}
\item $\log_{2}{56}$
\item $\log_{5.2}{26}$
\item $\log_{12}{500}$
\item $\log_{43}{134}$
\end{enumerate}
\begin{solution}
\begin{enumerate}
\item $\log_{2}{56} = 5.81$
\item $\log_{5.2}{26} = 1.97$
\item $\log_{12}{500} = 2.50$
\item $\log_{43}{134} = 1.30$
\end{enumerate}
\end{solution}
\vfill
\pagebreak