2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
\section{Cycle Notation}
|
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
\definition{Order}
|
2024-01-03 22:25:15 -08:00
|
|
|
The \textit{order} of a permutation $f$ is the smallest positive $n$ so that $f^n(x) = x$ for all $x$. \par
|
|
|
|
In other words: if we repeat this permutation $n$ times, we get back to where we started. \par
|
|
|
|
Note that the order is given by the \textit{smallest} positive integer $n$. There may be more than one!
|
|
|
|
|
2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
\vspace{2mm}
|
|
|
|
|
|
|
|
For example, consider $[2134]$. This permutation has order $2$, as we clearly see below:
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.5]
|
|
|
|
\node (1a) at (0, 0.5) {1};
|
|
|
|
\node (2a) at (1, 0.5) {2};
|
|
|
|
\node (3a) at (2, 0.5) {3};
|
|
|
|
\node (4a) at (3, 0.5) {4};
|
|
|
|
|
|
|
|
\node (2b) at (0, -2) {2};
|
|
|
|
\node (1b) at (1, -2) {1};
|
|
|
|
\node (3b) at (2, -2) {3};
|
|
|
|
\node (4b) at (3, -2) {4};
|
|
|
|
|
|
|
|
\node (1c) at (0, -4.5) {1};
|
|
|
|
\node (2c) at (1, -4.5) {2};
|
|
|
|
\node (3c) at (2, -4.5) {3};
|
|
|
|
\node (4c) at (3, -4.5) {4};
|
|
|
|
|
|
|
|
\line{1a}{1b}
|
|
|
|
\line{2a}{2b}
|
|
|
|
\line{3a}{3b}
|
|
|
|
\line{4a}{4b}
|
|
|
|
\line{1b}{1c}
|
|
|
|
\line{2b}{2c}
|
|
|
|
\line{3b}{3c}
|
|
|
|
\line{4b}{4c}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
2024-01-03 11:44:34 -08:00
|
|
|
Of course, swapping the first two elements of a list twice changes nothing. \par
|
|
|
|
Thus, $[2134]$ is its own inverse, and has an order of two. \par
|
|
|
|
Naturally, the identity permutation has order one.
|
2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
What is the order of $[2314]$? \par
|
|
|
|
How about $[4321]$? \par
|
2024-01-03 22:25:15 -08:00
|
|
|
\note[Note]{You shouldn't need to draw any strings to solve this problem.}
|
2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{Bonus}
|
|
|
|
Show that all permutations (on a finite set) have a well-defined order. \par
|
|
|
|
In other words, show that there is always an integer $n$ so that $f^n(x) = x$.
|
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
\vfill
|
|
|
|
|
2024-01-08 10:56:22 -08:00
|
|
|
\definition{Composition}<compdef>
|
2024-01-03 11:44:34 -08:00
|
|
|
The \textit{composition} of two permutations $f$ and $g$ is the permutation $h(x) = f(g(x))$. \par
|
|
|
|
The usual notation for this is $f \circ g$, but we'll simply write $fg$.
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
What is $[1324][4321]$? \par
|
|
|
|
How about $[321][213][231]$? \par
|
2024-01-08 10:56:22 -08:00
|
|
|
\hint{is composition is left or right-associative? See \ref{compdef}}
|
2024-01-03 11:44:34 -08:00
|
|
|
|
|
|
|
|
2023-12-18 10:55:08 -08:00
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
|
|
|
|
As you may have noticed, the square-bracket notation we've been using thus far is a bit unwieldy.
|
|
|
|
Permutations are verbs---but we've been referring to them using a noun (namely, their output when
|
|
|
|
applied to an ordered sequence of numbers). Our notation fails to capture the meaning of the
|
|
|
|
underlying object.
|
|
|
|
|
|
|
|
\vspace{2mm}
|
|
|
|
|
|
|
|
Think about it: is the permutation $[1234]$ different than the permutation $[12345]$? \par
|
|
|
|
Indeed, these permutations operate on different sets---but they are both the identity! \par
|
|
|
|
What should we do if we want to talk about the identity on $\{1, 2, ..., 10\}$?
|
|
|
|
|
|
|
|
\vspace{2mm}
|
|
|
|
|
|
|
|
We need something better.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
\definition{Cycles}
|
2023-12-18 10:55:08 -08:00
|
|
|
Any permutation is composed of a number of \textit{cycles}. \par
|
|
|
|
|
|
|
|
For example, consider the permutation $[2134]$, which consists of one two-cycle: $1 \to 2 \to 1$ \par
|
|
|
|
\note[Note]{$3 \to 3$ and $4 \to 4$ are also cycles, but we'll ignore them. One-cycles aren't aren't interesting.}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.5]
|
|
|
|
\node (1) at (0, 0) {1};
|
|
|
|
\node (2) at (1, 0) {2};
|
|
|
|
\node (3) at (2, 0) {3};
|
|
|
|
\node (4) at (3, 0) {4};
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(1)
|
|
|
|
-- ($(1) + (0,-1)$)
|
|
|
|
-- ($(2) + (0,-1)$)
|
|
|
|
-- (2);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(2)
|
|
|
|
-- ($(2) + (0, 1)$)
|
|
|
|
-- ($(1) + (0, 1)$)
|
|
|
|
-- (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
2024-10-29 09:27:00 -07:00
|
|
|
The permutation $[431265]$ is a bit more interesting---it contains two cycles: \par
|
2023-12-18 10:55:08 -08:00
|
|
|
($1 \to 3 \to 2 \to 4 \to 1$ and $5 \to 6 \to 5$)
|
|
|
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.5]
|
|
|
|
\node (1) at (0, 0) {1};
|
|
|
|
\node (2) at (1, 0) {2};
|
|
|
|
\node (3) at (2, 0) {3};
|
|
|
|
\node (4) at (3, 0) {4};
|
|
|
|
\node (5) at (4, 0) {5};
|
|
|
|
\node (6) at (5, 0) {6};
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(3)
|
|
|
|
-- ($(3) + (0,-1)$)
|
|
|
|
-- ($(2) + (0,-1)$)
|
|
|
|
-- (2);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(2)
|
|
|
|
-- ($(2) + (0,1.5)$)
|
|
|
|
-- ($(4) + (0,1.5)$)
|
|
|
|
-- (4);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(4)
|
|
|
|
-- ($(4) + (0,-1.5)$)
|
|
|
|
-- ($(1) + (0,-1.5)$)
|
|
|
|
-- (1);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(1)
|
|
|
|
-- ($(1) + (0,1)$)
|
|
|
|
-- ($(3) + (0,1)$)
|
|
|
|
-- (3);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(5)
|
|
|
|
-- ($(5) + (0,-1)$)
|
|
|
|
-- ($(6) + (0,-1)$)
|
|
|
|
-- (6);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(6)
|
|
|
|
-- ($(6) + (0,1)$)
|
|
|
|
-- ($(5) + (0,1)$)
|
|
|
|
-- (5);
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
2024-01-03 22:25:15 -08:00
|
|
|
Another name we'll often use for two-cycles is \textit{transposition}. \par
|
|
|
|
Any permutation that swaps two adjacent elements is called a transposition. \par
|
|
|
|
|
2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Find all cycles in $[5342761]$.
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.5]
|
|
|
|
\node (1) at (0, 0) {1};
|
|
|
|
\node (2) at (1, 0) {2};
|
|
|
|
\node (3) at (2, 0) {3};
|
|
|
|
\node (4) at (3, 0) {4};
|
|
|
|
\node (5) at (4, 0) {5};
|
|
|
|
\node (6) at (5, 0) {6};
|
|
|
|
\node (7) at (6, 0) {7};
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(1)
|
|
|
|
-- ($(1) + (0,2)$)
|
|
|
|
-- ($(7) + (0,2)$)
|
|
|
|
-- (7);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(7)
|
|
|
|
-- ($(7) + (0,-1.5)$)
|
|
|
|
-- ($(5) + (0,-1.5)$)
|
|
|
|
-- (5);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(5)
|
|
|
|
-- ($(5) + (0,1.5)$)
|
|
|
|
-- ($(1) + (0.5,1.5)$)
|
|
|
|
-- ($(1) + (0.5,-1)$)
|
|
|
|
-- ($(1) + (0,-1)$)
|
|
|
|
-- (1);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(2)
|
|
|
|
-- ($(2) + (0,-1.5)$)
|
|
|
|
-- ($(4) + (0,-1.5)$)
|
|
|
|
-- (4);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(4)
|
|
|
|
-- ($(4) + (0,1)$)
|
|
|
|
-- ($(3) + (0,1)$)
|
|
|
|
-- (3);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(3)
|
|
|
|
-- ($(3) + (0,-1)$)
|
|
|
|
-- ($(2) + (0.5,-1)$)
|
|
|
|
-- ($(2) + (0.5,1)$)
|
|
|
|
-- ($(2) + (0,1)$)
|
|
|
|
-- (2);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
2024-01-03 11:44:34 -08:00
|
|
|
What permutation (on five objects) is formed by the cycles $3 \to 5 \to 3$ and $1 \to 2 \to 4 \to 1$?
|
2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.5]
|
|
|
|
\node (1) at (0, 0) {1};
|
|
|
|
\node (2) at (1, 0) {2};
|
|
|
|
\node (3) at (2, 0) {3};
|
|
|
|
\node (4) at (3, 0) {4};
|
|
|
|
\node (5) at (4, 0) {5};
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(3)
|
|
|
|
-- ($(3) + (0,1)$)
|
|
|
|
-- ($(5) + (0,1)$)
|
|
|
|
-- (5);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(5)
|
|
|
|
-- ($(5) + (0,-1)$)
|
|
|
|
-- ($(3) + (0,-1)$)
|
|
|
|
-- (3);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(1)
|
|
|
|
-- ($(1) + (0,-1)$)
|
|
|
|
-- ($(2) + (0,-1)$)
|
|
|
|
-- (2);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(2)
|
|
|
|
-- ($(2) + (0,1.5)$)
|
|
|
|
-- ($(4) + (0,1.5)$)
|
|
|
|
-- (4);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(4)
|
|
|
|
-- ($(4) + (0,-1.5)$)
|
|
|
|
-- ($(1) + (0.5,-1.5)$)
|
|
|
|
-- ($(1) + (0.5,1)$)
|
|
|
|
-- ($(1) + (0,1)$)
|
|
|
|
-- (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
|
|
|
|
This is $[41523]$
|
|
|
|
\end{center}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
\definition{Cycle Notation}
|
2023-12-18 10:55:08 -08:00
|
|
|
We now have a solution to our problem of notation.
|
|
|
|
Instead of referring to permutations using their output, we will refer to them using their \textit{cycles}.
|
|
|
|
|
|
|
|
\vspace{2mm}
|
|
|
|
|
|
|
|
For example, we'll write $[2134]$ as $(12)$, which denotes the cycle $1 \to 2 \to 1$:
|
|
|
|
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.5]
|
|
|
|
\node (1) at (0, 0) {1};
|
|
|
|
\node (2) at (1, 0) {2};
|
|
|
|
\node (3) at (2, 0) {3};
|
|
|
|
\node (4) at (3, 0) {4};
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(1)
|
|
|
|
-- ($(1) + (0,-1)$)
|
|
|
|
-- ($(2) + (0,-1)$)
|
|
|
|
-- (2);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(2)
|
|
|
|
-- ($(2) + (0, 1)$)
|
|
|
|
-- ($(1) + (0, 1)$)
|
|
|
|
-- (1);
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
As another example, $[431265]$ is $(1324)(56)$ in cycle notation. \par
|
|
|
|
Note that we write $[431265]$ as a \textit{composition} of two cycles: \par
|
|
|
|
applying the permutation $[431265]$ is the same as applying $(1324)$, then applying $(56)$.
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}[scale=0.5]
|
|
|
|
\node (1) at (0, 0) {1};
|
|
|
|
\node (2) at (1, 0) {2};
|
|
|
|
\node (3) at (2, 0) {3};
|
|
|
|
\node (4) at (3, 0) {4};
|
|
|
|
\node (5) at (4, 0) {5};
|
|
|
|
\node (6) at (5, 0) {6};
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(3)
|
|
|
|
-- ($(3) + (0,-1)$)
|
|
|
|
-- ($(2) + (0,-1)$)
|
|
|
|
-- (2);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(2)
|
|
|
|
-- ($(2) + (0,1.5)$)
|
|
|
|
-- ($(4) + (0,1.5)$)
|
|
|
|
-- (4);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(4)
|
|
|
|
-- ($(4) + (0,-1.5)$)
|
|
|
|
-- ($(1) + (0,-1.5)$)
|
|
|
|
-- (1);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ocyan]
|
|
|
|
(1)
|
|
|
|
-- ($(1) + (0,1)$)
|
|
|
|
-- ($(3) + (0,1)$)
|
|
|
|
-- (3);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(5)
|
|
|
|
-- ($(5) + (0,-1)$)
|
|
|
|
-- ($(6) + (0,-1)$)
|
|
|
|
-- (6);
|
|
|
|
|
|
|
|
\draw[line width = 0.3mm, ->, ogreen]
|
|
|
|
(6)
|
|
|
|
-- ($(6) + (0,1)$)
|
|
|
|
-- ($(5) + (0,1)$)
|
|
|
|
-- (5);
|
|
|
|
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
Any permutation $\sigma$ may be written as a product (i.e, composition) of disjoint cycles $\sigma_1\sigma_2...\sigma_k$. \par
|
|
|
|
Make sure you believe this fact. If you don't, ask an instructor. \par
|
|
|
|
Also, the identity $f(x) = x$ is written as $()$ in cycle notation.
|
|
|
|
|
|
|
|
|
2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Convince yourself that disjoint cycles commute. \par
|
2024-01-03 11:44:34 -08:00
|
|
|
That is, that $(1324)(56) = (56)(1324) = [431265]$ since $(1324)$ and $(56)$ do not overlap. \par
|
2023-12-18 10:55:08 -08:00
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}<insquare>
|
2023-12-18 10:55:08 -08:00
|
|
|
Write the following in square-bracket notation.
|
|
|
|
\begin{itemize}
|
|
|
|
\item $(12)$ \tab~\tab on a set of 2 elements
|
|
|
|
\item $(12)(435)$ \tab on a set of 5 elements
|
|
|
|
\vspace{2mm}
|
|
|
|
\item $(321)$ \tab~\tab on a set of 3 elements
|
|
|
|
\item $(321)$ \tab~\tab on a set of 6 elements
|
|
|
|
\vspace{2mm}
|
|
|
|
\item $(1234)$ \tab on a set of 4 elements
|
|
|
|
\item $(3412)$ \tab on a set of 4 elements
|
|
|
|
\end{itemize}
|
2024-01-03 11:44:34 -08:00
|
|
|
\note{
|
|
|
|
Note that $(12)$ refers the \say{swap first two} permutation on a set of \textit{any} size. \\
|
|
|
|
We can now use the same name for the same permutation on two different sets! \\
|
|
|
|
}
|
2023-12-18 10:55:08 -08:00
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
|
|
|
|
|
2023-12-18 10:55:08 -08:00
|
|
|
\problem{}
|
|
|
|
Write the following in square-bracket notation.
|
|
|
|
Be careful.
|
|
|
|
\begin{itemize}
|
|
|
|
\item $(13)(243)$ \tab on a set of 4 elements
|
|
|
|
\item $(243)(13)$ \tab on a set of 4 elements
|
|
|
|
\end{itemize}
|
|
|
|
|
2024-01-03 11:44:34 -08:00
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Look at the last two permutations in \ref{insquare}, $(1234)$ and $(3412)$. \par
|
|
|
|
These are \textit{identical}---they are the same cycle written in two different ways. \par
|
2024-01-03 22:25:15 -08:00
|
|
|
List all other ways to write this cycle. \hint{There are two more.} \par
|
|
|
|
\note{Also, note that the last two permutations in \ref{insquare} are the same.}
|
2024-01-03 11:44:34 -08:00
|
|
|
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
What is the inverse of $(12)$? \par
|
|
|
|
How about $(123)$? And $(4231)$? \par
|
|
|
|
\note{
|
|
|
|
Note that again, we don't need to know how big our set is. \\
|
|
|
|
The inverse of $(12)$ is the same in all sets.
|
|
|
|
}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
2024-01-08 10:56:22 -08:00
|
|
|
Say $\sigma$ is a permutation composed of disjoint cycles $\sigma_1\sigma_2...\sigma_k$. \par
|
2024-01-03 11:44:34 -08:00
|
|
|
Say we know the order of all $\sigma_i$. What is the order of $\sigma$?
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
$\text{lcm}\Bigl(\text{ord}(\sigma_1),~ \text{ord}(\sigma_2),~ ..., ~ \text{ord}(\sigma_k)\Bigr)$
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}<cycletrans>
|
|
|
|
Show that any cycle $(123...n)$ is equal to the product $(12)(23)...(n-1, n)$.
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
TODO
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Write $(7126453)$ as a product of transpositions. \par
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
\problem{}<simpletrans>
|
|
|
|
Show that any permutation is a product of transpositions.
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
Use \ref{cycletrans}.
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that any permutation is a product of transpositions of the form $(1, k)$. \par
|
|
|
|
|
|
|
|
\begin{solution}
|
2024-01-08 10:56:22 -08:00
|
|
|
Use \ref{simpletrans} and rewrite each $(a, b)$ as $(1, a)(1, b)(1, a)$. \par
|
|
|
|
Showing that $(a, b) = (1, a)(1, b)(1, a)$ is fairly easy.
|
2024-01-03 11:44:34 -08:00
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that any transposition $(a, b)$ is equal to the product $(a, a+1)(a+1, b)(a, a+1)$.
|
|
|
|
|
|
|
|
\begin{solution}
|
2024-01-08 10:56:22 -08:00
|
|
|
This is the same as the $(1, a)(1, b)(1, a)$ case above, but we use $a + 1$
|
|
|
|
as a \say{working slot} instead of $1$.
|
2024-01-03 11:44:34 -08:00
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that any permutation is a product of adjacent transpositions. \par
|
|
|
|
(An \textit{adjacent transposition} swaps two adjacent elements, and thus looks like $(n, n+1)$)
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
As before, we will use \ref{simpletrans} and rewrite the transpositions it produces in a form that fits the problem.
|
|
|
|
We thus need to show that every transposition $(a, b)$ is a product of adjacent transpositions.
|
|
|
|
|
|
|
|
\vspace{8mm}
|
|
|
|
|
|
|
|
In the proof below, assume that $a < b$ and perform induction on $b - a$. \par
|
|
|
|
|
|
|
|
\textbf{Base Case:}\par
|
|
|
|
If $b - a = 1$, we clearly see that $(a, b)$ is a product of adjacent. \par
|
|
|
|
In fact, it \textit{is} an adjacent transposition.
|
|
|
|
|
|
|
|
\vspace{4mm}
|
|
|
|
|
|
|
|
\textbf{Induction:}\par
|
|
|
|
Now, say $b - a = n + 1$. \par
|
|
|
|
Assume that all $(a, b)$ where $b - a \leq n$ are products of adjacent transpositions.\par
|
|
|
|
Note that $(a, b) = (a, a+1)(a+1, b)(a, a+1)$.
|
|
|
|
|
|
|
|
\vspace{2mm}
|
|
|
|
|
|
|
|
$(a, a+1)$ is an adjacent transposition, and $b - (a+1) = n$. \par
|
|
|
|
Thus, $(a, b)$ is a product of adjacent transpositions.
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
|
2023-12-18 10:55:08 -08:00
|
|
|
\vfill
|
|
|
|
\pagebreak
|