2023-01-12 08:31:10 -08:00
\section { Error Correction}
2023-06-19 15:42:33 -07:00
As we saw in \ref { isbn-nocorrect} , the ISBN check-digit scheme does not allow us to correct errors. \par
QR codes feature a system that does. \par
\vspace { 1mm}
Odds are, you've seen a QR code with an image in the center. Such codes aren't \say { special} ---they're simply missing their central pixels. The error-correcting algorithm in the QR specification allows us to read the code despite this damage.
2023-01-12 08:31:10 -08:00
\begin { figure} [h]
\centering
2023-06-20 10:07:35 -07:00
\href { https://youtube.com/watch?v=dQw4w9WgXcQ} { \includegraphics [width = 3cm] { qr} }
2023-01-12 08:31:10 -08:00
\end { figure}
\definition { Repeating codes}
2023-06-19 15:42:33 -07:00
The simplest possible error-correcting code is a \textit { repeating code} . It works just as you'd expect: \par
Instead of sending data once, it sends multiple copies of each bit. \par
If a few bits are damaged, they can be both detected and repaired. \par
2023-01-12 08:31:10 -08:00
For example, consider the following three-repeat code encoding the binary string $ 101 $ :
$$
111~000~111
$$
If we flip any one bit, we can easily find and fix the error.
2023-06-20 10:07:35 -07:00
\problem { } <number-repeat>
2023-06-19 15:42:33 -07:00
How many repeated digits do you need to...
\begin { itemize}
\item [-] detect a transposition error?
\item [-] correct a transposition error?
\end { itemize}
\vfill
2023-01-12 08:31:10 -08:00
\definition { Code Efficiency}
The efficiency of an error-correcting code is calculated as follows:
$$
\frac { \text { number of data bits} } { \text { total bits sent} }
$$
For example, the efficiency of the three-repeat code above is $ \frac { 3 } { 9 } = \frac { 1 } { 3 } \approx 0 . 33 $
2023-06-20 10:07:35 -07:00
\problem { } <k-efficiency>
2023-06-19 15:42:33 -07:00
What is the efficiency of a $ k $ -repeat code?
2023-01-12 08:31:10 -08:00
\vfill
2023-06-20 10:07:35 -07:00
As you just saw, repeat codes are not a good solution. You need many extra bits for even a small amount of redundancy. We need a better system.
2023-01-12 08:31:10 -08:00
\pagebreak
2023-06-20 10:07:35 -07:00
%\definition{Hamming's Square Code}
%We will now analyze a more efficient coding scheme: \par
%
%\vspace{1mm}
%
%Take a four-bit message and arrange it in a $2 \times 2$ square. \par
%Compute the pairity of each row and write it at the right. \par
%Compute the pairity of each column and write it at the bottom. \par
%Finally, compute the pairity of the entire message write it in the lower right corner.
%This ensures that the total number of ones in the message is even.
%
%\vspace{2mm}
%
%Reading the result row by row to get the encoded message. \par
%For example, the message 1011 generates the sequence 101110011:
%
%$$
%1011
%\longrightarrow
%\begin{array}{cc|}
% 1 & 0 \\
% 1 & 1 \\
% \hline
%\end{array}
%\longrightarrow
%\begin{array}{cc|c}
% 1 & 0 & 1 \\
% 1 & 1 & 0 \\ \hline
% 0 & 1 &
%\end{array}
%\longrightarrow
%\begin{array}{cc|c}
% 1 & 0 & 1 \\
% 1 & 1 & 0 \\ \hline
% 0 & 1 & 1
%\end{array}
%\longrightarrow
%101110011
%$$
%
%\problem{}
%The following messages are encoded using the method above.
%Find and correct any single-digit or transposition errors.
%\begin{enumerate}
% \item \texttt{110 110 011} %101110011
% \item \texttt{100 101 011} %110101011
% \item \texttt{001 010 110} %000110110
%\end{enumerate}
%
%\begin{solution}
% \begin{enumerate}
% \item \texttt{101 110 011} or \texttt{110 101 011}
% \item \texttt{110 101 011}
% \item \texttt{000 110 110}
% \end{enumerate}
%\end{solution}
%
%\vfill
%
%\problem{}
%What is the efficiency of this coding scheme?
%
%\vfill
%
%\problem{}
%Can we correct a single-digit error in the encoded message? \par
%Can we correct a transposition error in the encoded message?
%
%\vfill
%
%\problem{}
%Let's generalize this coding scheme to a non-square table: \par
%Given a message of length $ab$, construct a rectangle with dimensions $a \times b$ as described above.
%\begin{itemize}
% \item What is the efficiency of a $a \times b$ rectangle code?
% \item Can the $a \times b$ rectangle code detect and fix single-bit errors?
% \item Can the $a \times b$ rectangle code detect and fix two-bit errors?
%\end{itemize}
%
%\vfill
%\pagebreak