2023-04-05 15:31:36 -07:00
% use [nosolutions] flag to hide solutions.
% use [solutions] flag to show solutions.
\documentclass [
solutions,
nowarning,
%singlenumbering
]{ ../../resources/ormc_ handout}
%\usepackage{lua-visual-debug}
\usepackage { tikz-3dplot}
2023-04-09 10:58:49 -07:00
\usetikzlibrary { quotes,angles}
2023-04-05 15:31:36 -07:00
\begin { document}
\maketitle
<Advanced 2>
<Spring 2023>
{ Linear Algebra 101}
{
Prepared by Mark on \today \\
}
2023-04-09 10:58:49 -07:00
\input { parts/0 notation}
\input { parts/1 vectors}
2023-04-05 15:31:36 -07:00
2023-04-09 10:58:49 -07:00
\section { Dot Products}
2023-04-05 15:31:36 -07:00
\definition { }
2023-04-09 10:58:49 -07:00
We can also define the \textit { dot product} of two vectors.\footnotemark { } \\
The dot product maps two elements of $ \mathbb { R } ^ n $ to one element of $ \mathbb { R } $ :
2023-04-05 15:31:36 -07:00
2023-04-09 10:58:49 -07:00
\footnotetext {
\textbf { Bonus content. Feel free to skip.}
2023-04-05 15:31:36 -07:00
2023-04-09 10:58:49 -07:00
Formally, we would say that the dot product is a map from $ \mathbb { R } ^ n \times \mathbb { R } ^ n $ to $ \mathbb { R } $ . Why is this reasonable?
2023-04-05 15:31:36 -07:00
2023-04-09 10:58:49 -07:00
\vspace { 2mm}
2023-04-05 15:31:36 -07:00
2023-04-09 10:58:49 -07:00
It's also worth noting that a function $ f $ from $ X $ to $ Y $ can defined as a subset of $ X \times Y $ , where for all $ x \in X $ there exists a unique $ y \in Y $ so that $ ( x, y ) \in f $ . Try to make sense of this definition.
}
$$
a \cdot b = \sum _ { i = 1} ^ n a_ ib_ i = a_ 1b_ 1 + a_ 2b_ 2 + ... + a_ nb_ n
$$
2023-04-05 15:31:36 -07:00
\problem { }
2023-04-09 10:58:49 -07:00
Compute $ [ 2 , 3 , 4 , 1 ] \cdot [ 2 , 4 , 10 , 12 ] $
2023-04-05 15:31:36 -07:00
\vfill
\problem { }
2023-04-09 10:58:49 -07:00
Show that the dot product is
\begin { itemize}
\item Commutative
\item Distributive
\item Homogeneic: $ x ( a \cdot b ) = xa \cdot b = a \cdot xb $
\item Positive definite: $ a \cdot a \geq 0 $ , with equality iff $ a = 0 $
\end { itemize}
2023-04-05 15:31:36 -07:00
\vfill
\pagebreak
\problem { }
2023-04-09 10:58:49 -07:00
Say you have two vectors, $ a $ and $ b $ . Show that $ \langle a, b \rangle $ = $ ||a||~||b|| \cos ( \alpha ) $ \\
\hint { What is $ c $ in terms of $ a $ and $ b $ ?}
\hint { The law of cosines is $ a ^ 2 + b ^ 2 - 2 ab \cos ( \alpha ) = c ^ 2 $ }
\hint { The length of $ a $ is $ ||a|| $ }
2023-04-05 15:31:36 -07:00
2023-04-09 10:58:49 -07:00
\begin { center}
\begin { tikzpicture} [scale=1]
\draw [->]
(0,0) coordinate (o) -- node[above left] { $ a $ }
(1,2) coordinate (a)
;
\draw [->]
(o) -- node[below] { $ b $ }
(3,0.5) coordinate (b)
;
\draw [
draw = gray,
text = gray,
-
] (a) -- node[above] { $ c $ } (b);
\draw
pic[
"$ \alpha $ ",
draw = orange,
text = orange,
<->,
angle eccentricity = 1.2,
angle radius = 1cm
]
{ angle = b--o--a }
;
2023-04-05 15:31:36 -07:00
2023-04-09 10:58:49 -07:00
\end { tikzpicture}
\end { center}
2023-04-05 15:31:36 -07:00
2023-04-10 11:48:29 -07:00
\vfill
2023-04-05 15:31:36 -07:00
2023-04-10 11:48:29 -07:00
\problem { }
If $ a $ and $ b $ are perpendicular, what must $ \langle a, b \rangle $ be? Is the converse true?
2023-04-05 15:31:36 -07:00
\vfill
\pagebreak
2023-04-10 11:48:29 -07:00
\section { Bonus}
2023-04-05 15:31:36 -07:00
2023-04-10 11:48:29 -07:00
\problem { }
Show that the euclidean norm satisfies the triangle inequalty:
$$
||x+y|| \leq ||x|| + ||y||
$$ :
2023-04-05 15:31:36 -07:00
2023-04-10 11:48:29 -07:00
\vfill
\problem { }
Show that the eucidean norm satisfies the reverse triangle inequality:
$$
||x - y|| \geq |~||x|| - ||y||~|
$$
2023-04-05 15:31:36 -07:00
2023-04-10 11:48:29 -07:00
\vfill
\problem { }
Prove the Cauchy-Schwartz inequality:
2023-04-05 15:31:36 -07:00
2023-04-10 11:48:29 -07:00
$$
||\langle x, y \rangle || = ||x||~||y||
$$
2023-04-05 15:31:36 -07:00
2023-04-10 11:48:29 -07:00
\vfill
2023-04-05 15:31:36 -07:00
\end { document}