130 lines
4.3 KiB
TeX
Raw Normal View History

2024-09-25 09:13:56 -07:00
\section{Probability}
2024-09-23 13:34:01 -07:00
\definition{}
A \textit{sample space} is a finite set $\Omega$. \par
The elements of this set are called \textit{outcomes}. \par
An \textit{event} is a set of outcomes (i.e, a subset of of $\Omega$).
\definition{}
A \textit{probability function} over a sample space $\Omega$ is a function $\mathcal{P}: P(\Omega) \to (0, 1)$ \par
that maps events to real numbers between 0 and 1. \par
Any probability function has the following properties:
\begin{itemize}
\item $\mathcal{P}(\varnothing) = 0$
\item $\mathcal{P}(\Omega) = 1$
\item For events $A$ and $B$ where $A \cap B = \varnothing$, $\mathcal{P}(A \cup B) = \mathcal{P}(A) + \mathcal{P}(B)$
\end{itemize}
2024-09-25 09:13:56 -07:00
\problem{}<threecoins>
2024-09-23 13:34:01 -07:00
Say we flip a fair coin three times. \par
List all elements of the sample space $\Omega$ this experiment generates.
\vfill
\problem{}
2024-09-25 09:13:56 -07:00
Using the same setup as \ref{threecoins}, find the following:
2024-09-23 13:34:01 -07:00
\begin{itemize}
\item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has at least two \say{heads}}\} ~)$
\item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has an odd number of \say{heads}}\} ~)$
\item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has at least one \say{tails}}\} ~)$
\end{itemize}
\vfill
\pagebreak
%
% MARK: Page
%
\definition{}
Given a sample space $\Omega$ and a probability function $\mathcal{P}$, \par
a \textit{random variable} is a function from $\Omega$ to a specified output set.
\vspace{2mm}
For example, given the three-coin-toss sample space
$\Omega = \{
\texttt{TTT},~ \texttt{TTH},~ \texttt{THT},~
\texttt{THH},~ \texttt{HTT},~ \texttt{HTH},~
\texttt{HHT},~ \texttt{HHH}
\}$,
We can define a random variable $\mathcal{H}$ as \say{the number of heads in a throw of three coins}. \par
As a function, $\mathcal{H}$ maps values in $\Omega$ to values in $\mathbb{Z}^+_0$ and is defined as:
\begin{itemize}
\item $\mathcal{H}(\texttt{TTT}) = 0$
\item $\mathcal{H}(\texttt{TTH}) = 1$
\item $\mathcal{H}(\texttt{THT}) = 1$
\item $\mathcal{H}(\texttt{THH}) = 2$
\item ...and so on.
\end{itemize}
\definition{}
We can compute the probability that a random variable takes a certain value by computing the probability of
the set of outcomes that produce that value. \par
\vspace{2mm}
For example, if we wanted to compute $\mathcal{P}(\mathcal{H} = 2)$, we would find
$\mathcal{P}\bigl(\{\texttt{THH}, \texttt{HTH}, \texttt{HHT}\}\bigr)$.
\problem{}
Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ three times. \par
What is $\mathcal{P}(\mathcal{H} = 1)$, with $\mathcal{H}$ defined as above? \par
What is $\mathcal{P}(\mathcal{H} = 5)$?
\vfill
\problem{}
Say we roll a fair six-sided die twice. \par
Let $\mathcal{X}$ be a random variable measuring the sum of the two results. \par
Find $\mathcal{P}(\mathcal{X} = x)$ for all $x$ in $\mathbb{Z}$.
\vfill
\pagebreak
%
% MARK: Page
%
\definition{}
2024-09-25 09:13:56 -07:00
Say we have a random variable $\mathcal{X}$ that produces outputs in $\mathbb{R}$. \par
2024-09-23 13:34:01 -07:00
The \textit{expected value} of $\mathcal{X}$ is then defined as
\begin{equation*}
\mathcal{E}(\mathcal{X})
~\coloneqq~ \sum_{x \in A}\Bigl(x \times \mathcal{P}\bigl(\mathcal{X} = x\bigr)\Bigr)
~=~ \sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr)
\end{equation*}
That is, $\mathcal{E}(\mathcal{X})$ is the average of all possible outputs of $\mathcal{X}$ weighted by their probability.
\problem{}
Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ three times. \par
Define $\mathcal{H}$ as the number of heads we see. \par
Find $\mathcal{E}(\mathcal{H})$.
\vfill
\problem{}
Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables. \par
Show that $\mathcal{E}(\mathcal{A} + \mathcal{B}) = \mathcal{E}(\mathcal{A}) + \mathcal{E}(\mathcal{B})$.
\vfill
\definition{}
Let $A$ and $B$ be events on a sample space $\Omega$. \par
2024-09-25 09:13:56 -07:00
We say that $A$ and $B$ are \textit{independent} if $\mathcal{P}(A \cap B) = \mathcal{P}(A) + \mathcal{P}(B)$. \par
2024-09-23 13:34:01 -07:00
Intuitively, events $A$ and $B$ are independent if the outcome of one does not affect the other.
\definition{}
Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables over $\Omega$. \par
We say that $\mathcal{A}$ and $\mathcal{B}$ are independent if the events $\{\omega \in \Omega ~|~ \mathcal{A}(\omega) = a\}$
and $\{\omega \in \Omega ~|~ \mathcal{B}(\omega) = b\}$ are independent for all $(a, b)$ that $\mathcal{A}$ and $\mathcal{B}$ can produce.
\pagebreak