130 lines
3.8 KiB
TeX
130 lines
3.8 KiB
TeX
|
\documentclass[../main.tex]{subfiles}
|
||
|
|
||
|
\begin{document}
|
||
|
\section{The Euclidean Algorithm}
|
||
|
|
||
|
\definition{}
|
||
|
The \textit{greatest common divisor} of $a$ and $b$ is the greatest integer that divides both $a$ and $b$. \\
|
||
|
We denote this number with $\gcd(a, b)$. For example, $\gcd(45, 60) = 15$.
|
||
|
|
||
|
|
||
|
\theorem{The Division Algorithm}
|
||
|
Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \\
|
||
|
In other words, we can divide $a$ by $b$ to get $q$ remainder $r$.
|
||
|
|
||
|
\theorem{}<gcd_abc>
|
||
|
For any integers $a, b, c$, \\
|
||
|
$\gcd(ac + b, a) = \gcd(a, b)$
|
||
|
|
||
|
\problem{}
|
||
|
Find $\gcd(20, 14)$ by hand.
|
||
|
|
||
|
\begin{solution}
|
||
|
$\gcd(20, 14) = 2$
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}<euclid_algorithm>
|
||
|
Using the theorems above, detail an algorithm for finding $\gcd(a, b)$.\\
|
||
|
Then, compute $\gcd(1610, 207)$ by hand. \\
|
||
|
Have an instructor check your work before moving on.
|
||
|
|
||
|
\begin{solution}
|
||
|
Using \ref{gcd_abc} and the division algorthm,
|
||
|
|
||
|
% Minipage prevents column breaks inside body
|
||
|
\begin{multicols}{2}
|
||
|
\begin{minipage}{\columnwidth}
|
||
|
$\gcd(1610, 207)$ \\
|
||
|
$= \gcd(207, 161)$ \\
|
||
|
$= \gcd(161, 46)$ \\
|
||
|
$= \gcd(46, 23)$ \\
|
||
|
$= \gcd(23, 0) = 23$ \\
|
||
|
\end{minipage}
|
||
|
|
||
|
\columnbreak
|
||
|
|
||
|
\begin{minipage}{\columnwidth}
|
||
|
$1610 = 207 \times 7 + 161$ \\
|
||
|
$207 = 161 \times 1 + 46$ \\
|
||
|
$161 = 46 \times 3 + 23$ \\
|
||
|
$46 = 23 \times 2 + 0$ \\
|
||
|
\end{minipage}
|
||
|
\end{multicols}
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
|
||
|
\problem{Divide and Conquer}
|
||
|
If we are given $a, b, c$, when can we find $u, v$ that satisfy $au + bv = c$?
|
||
|
|
||
|
\problempart{Divide}
|
||
|
Show that if we find a solution $(u, v)$ to $au + bv = \gcd(a, b)$, we can easily find a $(u, v)$ for any other value of $c$. \\
|
||
|
\textcolor{gray}{\textit{Note: } We are not looking for \textit{all} $(u, v)$ that solve $au + bv = c$, we are looking for an easy way to find \textit{any} $(u, v)$.}
|
||
|
|
||
|
\begin{solution}
|
||
|
Note that $\gcd(a, b)$ divides both a and b. \\
|
||
|
Therefore, any $c$ must be divisible by $\gcd(a, b)$.
|
||
|
The smallest such $c$ is $\gcd(a, b)$ itself, and we can get all other tuples $(u, v, c)$ by scaling.
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problempart{Conquer}<extend_e_algorithm>
|
||
|
Using the output of your algorithm\footnotemark{} from \ref{euclid_algorithm},
|
||
|
\footnotetext{Your solution to \ref{euclid_algorithm} is called the \textit{Euclidean Algorithm}}
|
||
|
\begin{itemize}
|
||
|
\item[-] find a pair $(u, v)$ that satisfies $20u + 14v = \gcd(20, 14)$
|
||
|
\item[-] find a pair $(u, v)$ that satisfies $541u + 34v = \gcd(541, 34)$ \\
|
||
|
% gcd = 1
|
||
|
% u = 11; v = -175
|
||
|
\end{itemize}
|
||
|
For which numbers $c$ can we find a $(u, v)$ so that $541u + 34v = c$? \\
|
||
|
For every such $c$, what are $u$ and $v$?
|
||
|
|
||
|
\begin{solution}
|
||
|
|
||
|
Using the output of the Euclidean Algorithm, we can use substitution and a bit of algebra to solve such problems. Consider the following example:
|
||
|
|
||
|
\begin{multicols}{2}
|
||
|
\begin{minipage}{\columnwidth}
|
||
|
\textit{Euclidean Algorithm:} \\
|
||
|
$20 = 14 \times 1 + 6$ \\
|
||
|
$14 = 6 \times 2 + 2$ \\
|
||
|
$6 = 2 \times 3 + 0$ \\
|
||
|
\end{minipage}
|
||
|
|
||
|
\columnbreak
|
||
|
|
||
|
\begin{minipage}{\columnwidth}
|
||
|
\textit{Rearranged:} \\
|
||
|
$6 = 20 - 14 \times 1$ \\
|
||
|
$2 = 14 - 6 \times 2 = \gcd(20, 14)$ \\
|
||
|
\end{minipage}
|
||
|
\end{multicols}
|
||
|
|
||
|
Using the right table, we can replace $6$ in $2 = 14 - 6 \times 2$ to get
|
||
|
$2 = 14 - (20 - 14) \times 2$, \\
|
||
|
which gives us $2 = \gcd(20, 14) = (3)14 + (-2)20$. \\
|
||
|
|
||
|
\textcolor{gray}{\textit{Note to instructors:} You can present the $(20, 14)$ case as an example.}
|
||
|
|
||
|
\linehack{}
|
||
|
|
||
|
$(-2)20 + (3)14 = \gcd(20, 14) = 2$ \\
|
||
|
$(11)541 + (-175)34 = \gcd(541, 34) = 1$
|
||
|
|
||
|
\linehack{}
|
||
|
|
||
|
We can find a solution $(u, v)$ when $c$ is any integer multiple of $\gcd(541, 34)$. \\
|
||
|
If $c = k \times \gcd(541, 34)$, \\
|
||
|
$u = k \times u_0 = 11k$ and $v = k \times v_0 = -175k$. \\
|
||
|
(See Part A)
|
||
|
|
||
|
\end{solution}
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
\end{document}
|