Using the theorems above, detail an algorithm for finding $\gcd(a, b)$.\\
Then, compute $\gcd(1610, 207)$ by hand. \\
\begin{solution}
Using \ref{gcd_abc} and the division algorthm,
% Minipage prevents column breaks inside body
\begin{multicols}{2}
\begin{minipage}{\columnwidth}
$\gcd(1610, 207)$\par
$=\gcd(207, 161)$\par
$=\gcd(161, 46)$\par
$=\gcd(46, 23)$\par
$=\gcd(23, 0)=23$\par
\end{minipage}
\columnbreak
\begin{minipage}{\columnwidth}
$1610=207\times7+161$\par
$207=161\times1+46$\par
$161=46\times3+23$\par
$46=23\times2+0$\par
\end{minipage}
\end{multicols}
\end{solution}
\vfill
\pagebreak
\problem{Divide and Conquer}
If we are given $a, b, c$, when can we find $u, v$ that satisfy $au + bv = c$?
\problempart{Divide}
Show that if we find a solution $(u, v)$ to $au + bv =\gcd(a, b)$, we can easily find a $(u, v)$ for any other value of $c$. \\
\textcolor{gray}{\textit{Note: } We are not looking for \textit{all}$(u, v)$ that solve $au + bv = c$, we are looking for an easy way to find \textit{any}$(u, v)$.}
\begin{solution}
Note that $\gcd(a, b)$ divides both a and b. \\
Therefore, any $c$ must be divisible by $\gcd(a, b)$.
The smallest such $c$ is $\gcd(a, b)$ itself, and we can get all other tuples $(u, v, c)$ by scaling.
\end{solution}
\vfill
\problempart{Conquer}<extend_e_algorithm>
Using the output of the Euclidean algorithm,
\begin{itemize}
\item[-] find a pair $(u, v)$ that satisfies $20u +14v =\gcd(20, 14)$
\item[-] find a pair $(u, v)$ that satisfies $541u +34v =\gcd(541, 34)$\\
% gcd = 1
% u = 11; v = -175
\end{itemize}
For which numbers $c$ can we find a $(u, v)$ so that $541u +34v = c$? \\
For every such $c$, what are $u$ and $v$?
\begin{solution}
Using the output of the Euclidean Algorithm, we can use substitution and a bit of algebra to solve such problems. Consider the following example:
\begin{multicols}{2}
\begin{minipage}{\columnwidth}
\textit{Euclidean Algorithm:}\par
$20=14\times1+6$\par
$14=6\times2+2$\par
$6=2\times3+0$\par
\end{minipage}
\columnbreak
\begin{minipage}{\columnwidth}
\textit{Rearranged:}\par
$6=20-14\times1$\par
$2=14-6\times2=\gcd(20, 14)$\par
\end{minipage}
\end{multicols}
Using the right table, we can replace $6$ in $2=14-6\times2$ to get
$2=14-(20-14)\times2$, \\
which gives us $2=\gcd(20, 14)=(3)14+(-2)20$. \\
\textcolor{gray}{\textit{Note to instructors:} You can present the $(20, 14)$ case as an example.}
\linehack{}
$(-2)20+(3)14=\gcd(20, 14)=2$\\
$(11)541+(-175)34=\gcd(541, 34)=1$
\linehack{}
We can find a solution $(u, v)$ when $c$ is any integer multiple of $\gcd(541, 34)$. \\
If $c = k \times\gcd(541, 34)$, \\
$u = k \times u_0=11k$ and $v = k \times v_0=-175k$. \\