237 lines
5.5 KiB
TeX
Raw Normal View History

2023-06-29 14:51:58 -07:00
\section{Paths and cycles}
A \textit{path} in a graph is, intuitively, a sequence of edges: $(x_1, x_2, x_4, ... )$. \par
I've highlighted one possible path in the graph below.
\begin{center}
\begin{tikzpicture}[
node distance={15mm},
thick,
main/.style = {draw, circle}
]
\node[main] (1) {$x_1$};
\node[main] (2) [above right of=1] {$x_2$};
\node[main] (3) [below right of=1] {$x_3$};
\node[main] (4) [above right of=3] {$x_4$};
\node[main] (5) [above right of=4] {$x_5$};
\node[main] (6) [below right of=4] {$x_6$};
\node[main] (7) [below right of=5] {$x_7$};
\draw[-] (1) -- (2);
\draw[-] (1) -- (3);
\draw[-] (2) -- (5);
\draw[-] (2) -- (4);
\draw[-] (3) -- (6);
\draw[-] (3) -- (4);
\draw[-] (4) -- (5);
\draw[-] (5) -- (7);
\draw[-] (6) -- (7);
\draw [
line width=2mm,
draw=black,
opacity=0.4
] (1) -- (2) -- (4) -- (3) -- (6);
\end{tikzpicture}
\end{center}
A \textit{cycle} is a path that starts and ends on the same vertex:
\begin{center}
\begin{tikzpicture}[
node distance={15mm},
thick,
main/.style = {draw, circle}
]
\node[main] (1) {$x_1$};
\node[main] (2) [above right of=1] {$x_2$};
\node[main] (3) [below right of=1] {$x_3$};
\node[main] (4) [above right of=3] {$x_4$};
\node[main] (5) [above right of=4] {$x_5$};
\node[main] (6) [below right of=4] {$x_6$};
\node[main] (7) [below right of=5] {$x_7$};
\draw[-] (1) -- (2);
\draw[-] (1) -- (3);
\draw[-] (2) -- (5);
\draw[-] (2) -- (4);
\draw[-] (3) -- (6);
\draw[-] (3) -- (4);
\draw[-] (4) -- (5);
\draw[-] (5) -- (7);
\draw[-] (6) -- (7);
\draw[
line width=2mm,
draw=black,
opacity=0.4
] (2) -- (4) -- (3) -- (6) -- (7) -- (5) -- (2);
\end{tikzpicture}
\end{center}
A \textit{Eulerian\footnotemark} path is a path that traverses each edge exactly once. \par
A Eulerian cycle is a cycle that does the same.
\footnotetext{Pronounced ``oiler-ian''. These terms are named after a Swiss mathematician, Leonhard Euler (1707-1783), who is usually considered the founder of graph theory.}
\vspace{2mm}
Similarly, a {\it Hamiltonian} path is a path in a graph that visits each vertex exactly once, \par
and a Hamiltonian cycle is a closed Hamiltonian path.
\medskip
An example of a Hamiltonian path is below.
\begin{center}
\begin{tikzpicture}[
node distance={15mm},
thick,
main/.style = {draw, circle}
]
\node[main] (1) {$x_1$};
\node[main] (2) [above right of=1] {$x_2$};
\node[main] (3) [below right of=1] {$x_3$};
\node[main] (4) [above right of=3] {$x_4$};
\node[main] (5) [above right of=4] {$x_5$};
\node[main] (6) [below right of=4] {$x_6$};
\node[main] (7) [below right of=5] {$x_7$};
\draw[-] (1) -- (2);
\draw[-] (1) -- (3);
\draw[-] (2) -- (5);
\draw[-] (2) -- (4);
\draw[-] (3) -- (6);
\draw[-] (3) -- (4);
\draw[-] (4) -- (5);
\draw[-] (5) -- (7);
\draw[-] (6) -- (7);
\draw [
line width=2mm,
draw=black,
opacity=0.4
] (1) -- (2) -- (4) -- (3) -- (6) -- (7) -- (5);
\end{tikzpicture}
\end{center}
\vfill
\pagebreak
\definition{}
We say a graph is \textit{connected} if there is a path between every pair of vertices. A graph is called \textit{disconnected} otherwise.
\problem{}
Draw a disconnected graph with four vertices. \par
Then, draw a graph with four vertices, all of degree one.
\vfill
\problem{}
Find a Hamiltonian cycle in the following graph.
\begin{center}
\begin{tikzpicture}[
node distance={20mm},
thick,
main/.style = {draw, circle}
]
\node[main] (1) {$x_1$};
\node[main] (2) [above right of=1] {$x_2$};
\node[main] (3) [below right of=1] {$x_3$};
\node[main] (4) [above right of=3] {$x_4$};
\node[main] (5) [above right of=4] {$x_5$};
\node[main] (6) [below right of=4] {$x_6$};
\node[main] (7) [below right of=5] {$x_7$};
\draw[-] (1) -- (2);
\draw[-] (1) -- (3);
\draw[-] (2) -- (5);
\draw[-] (2) -- (4);
\draw[-] (3) -- (6);
\draw[-] (3) -- (4);
\draw[-] (4) -- (5);
\draw[-] (5) -- (7);
\draw[-] (6) -- (7);
\end{tikzpicture}
\end{center}
\vfill
\pagebreak
\problem{}
Is there an Eulerian path in the following graph? \par
\begin{center}
\begin{tikzpicture}[
node distance={20mm},
thick,
main/.style = {draw, circle}
]
\node[main] (1) {$x_1$};
\node[main] (2) [above right of=1] {$x_2$};
\node[main] (3) [below right of=1] {$x_3$};
\node[main] (4) [above right of=3] {$x_4$};
\node[main] (5) [above right of=4] {$x_5$};
\node[main] (6) [below right of=4] {$x_6$};
\node[main] (7) [below right of=5] {$x_7$};
\draw[-] (1) -- (2);
\draw[-] (1) -- (3);
\draw[-] (2) -- (5);
\draw[-] (2) -- (4);
\draw[-] (3) -- (6);
\draw[-] (3) -- (4);
\draw[-] (4) -- (5);
\draw[-] (5) -- (7);
\draw[-] (6) -- (7);
\end{tikzpicture}
\end{center}
\vfill
\problem{}
Is there an Eulerian path in the following graph? \par
\begin{center}
\begin{tikzpicture}[
node distance={20mm},
thick,
main/.style = {draw, circle}
]
\node[main] (1) {$x_1$};
\node[main] (2) [above right of=1] {$x_2$};
\node[main] (3) [below right of=1] {$x_3$};
\node[main] (4) [above right of=3] {$x_4$};
\node[main] (5) [above right of=4] {$x_5$};
\node[main] (6) [below right of=4] {$x_6$};
\node[main] (7) [below right of=5] {$x_7$};
\draw[-] (1) -- (2);
\draw[-] (1) -- (3);
\draw[-] (2) -- (4);
\draw[-] (3) -- (6);
\draw[-] (3) -- (4);
\draw[-] (4) -- (5);
\draw[-] (5) -- (7);
\draw[-] (6) -- (7);
\end{tikzpicture}
\end{center}
\vfill
\problem{}
When does an Eulerian path exist? \par
\hint{Look at the degree of each node.}
\vfill
\pagebreak