577 lines
16 KiB
TeX
Raw Normal View History

2023-06-19 15:42:33 -07:00
\section{Hamming Codes}
Say we have a 16-bit message, for example \texttt{1011 0101 1101 1001}. \par
We will number its bits in binary, from left to right:
\begin{center}
\begin{tikzpicture}
\node[anchor=west] at (-1.75, 0) {Bit};
\node[anchor=west] at (-1.75, -0.5) {Index};
\node at (0, 0) {\texttt{1}};
\node at (1, 0) {\texttt{0}};
\node at (2, 0) {\texttt{1}};
\node at (3, 0) {\texttt{1}};
\node at (4, 0) {\texttt{0}};
\node at (5, 0) {\texttt{1}};
\node at (6, 0) {\texttt{0}};
\node at (7, 0) {\texttt{1}};
\draw (-1.75, 0.25) -- (6.9, 0.25);
\draw (-1.75, -0.25) -- (6.9, -0.25);
\draw (-1.75, -0.75) -- (6.9, -0.75);
\foreach \x in {-1.75,-0.5,0.5,...,6.5} {
\draw (\x, 0.25) -- (\x, -0.75);
}
\node[color=gray] at (0, -0.5) {\texttt{0000}};
\node[color=gray] at (1, -0.5) {\texttt{0001}};
\node[color=gray] at (2, -0.5) {\texttt{0010}};
\node[color=gray] at (3, -0.5) {\texttt{0011}};
\node[color=gray] at (4, -0.5) {\texttt{0100}};
\node[color=gray] at (5, -0.5) {\texttt{0101}};
\node[color=gray] at (6, -0.5) {\texttt{0110}};
\node[color=gray] at (7, -0.5) {\texttt{0111}};
\draw[fill = white, draw = none]
(6.9, 0.25)
-- (7.1, 0)
-- (6.9, -0.25)
-- (7.1, -0.5)
-- (6.9, -0.75)
-- (7.5, -0.75)
-- (7.5, 0.25)
;
\draw (6.9, 0.25)
-- (7.1, 0)
-- (6.9, -0.25)
-- (7.1, -0.5)
-- (6.9, -0.75)
;
\node[anchor=west,color=gray] at (7.2, -0.25) { and so on...};
\end{tikzpicture}
\end{center}
\problem{}
In this 16-bit message, how many message bits have an index with a one as the last digit? \par
(i.e, an index that looks like \texttt{***1})
\vspace{2cm}
\problem{}
Say we number the bits in a 32-bit message as above. \par
How many message bits have an index with a one as the $n^\text{th}$ digit? \par
\vspace{2cm}
2023-06-25 18:28:08 -07:00
We now want a way to detect errors in our 16-bit message. To do this, we'll replace a few data bits with parity bits. This will reduce the amount of information we can send, but will also improve our error-detection capabilities.
2023-06-19 15:42:33 -07:00
\vspace{1mm}
2023-06-25 18:28:08 -07:00
Let's arrange our message in a grid. We'll make the first bit (currently empty, marked \texttt{X}) a parity bit. Its value will depend on the content of the message: if our message has an even number of ones, it will be zero; if our message has an odd number of ones, it will be one. \par
This first bit ensures that there is an even number of ones in the whole message.
2023-06-19 15:42:33 -07:00
\begin{center}
2023-06-25 18:28:08 -07:00
\hfill
\begin{tikzpicture}[scale = 1.25]
\node at (0.75, 0.5) {Bit Numbering};
\node at (0.0, 0) {\texttt{0}};
\node at (0.5, 0) {\texttt{1}};
\node at (1.0, 0) {\texttt{2}};
\node at (1.5, 0) {\texttt{3}};
\node at (0.0, -0.5) {\texttt{4}};
\node at (0.5, -0.5) {\texttt{5}};
\node at (1.0, -0.5) {\texttt{6}};
\node at (1.5, -0.5) {\texttt{7}};
\node at (0.0, -1) {\texttt{8}};
\node at (0.5, -1) {\texttt{9}};
\node at (1.0, -1) {\texttt{10}};
\node at (1.5, -1) {\texttt{11}};
\node at (0.0, -1.5) {\texttt{12}};
\node at (0.5, -1.5) {\texttt{13}};
\node at (1.0, -1.5) {\texttt{14}};
\node at (1.5, -1.5) {\texttt{15}};
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\end{tikzpicture}
\hfill
2023-06-19 15:42:33 -07:00
\begin{tikzpicture}[scale = 1.25]
2023-06-25 18:28:08 -07:00
\node at (0.75, 0.5) {Sample Message};
2023-06-19 15:42:33 -07:00
\node at (0.0, 0) {\texttt{X}};
\node at (0.5, 0) {\texttt{0}};
\node at (1.0, 0) {\texttt{1}};
\node at (1.5, 0) {\texttt{1}};
\node at (0.0, -0.5) {\texttt{0}};
\node at (0.5, -0.5) {\texttt{1}};
\node at (1.0, -0.5) {\texttt{0}};
\node at (1.5, -0.5) {\texttt{1}};
\node at (0.0, -1) {\texttt{1}};
\node at (0.5, -1) {\texttt{1}};
\node at (1.0, -1) {\texttt{0}};
\node at (1.5, -1) {\texttt{1}};
\node at (0.0, -1.5) {\texttt{1}};
\node at (0.5, -1.5) {\texttt{0}};
\node at (1.0, -1.5) {\texttt{0}};
\node at (1.5, -1.5) {\texttt{1}};
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw (-0.2,-0.2) -- (0.2, -0.2) -- (0.2, 0.2) -- (-0.2, 0.2) -- (-0.2,-0.2);
\end{tikzpicture}
2023-06-25 18:28:08 -07:00
\hfill~
2023-06-19 15:42:33 -07:00
\end{center}
\problem{}
2023-06-25 18:28:08 -07:00
What is the value of the parity bit in the message above?
2023-06-19 15:42:33 -07:00
\vfill
\problem{}
Can this coding scheme detect a transposition error? \par
Can this coding scheme detect two single-bit errors? \par
Can this coding scheme correct a single-bit error?
\vfill
\pagebreak
2023-06-25 18:28:08 -07:00
We'll now add four more parity bits, in positions \texttt{0001}, \texttt{0010}, \texttt{0100}, and \texttt{1000}:
2023-06-19 15:42:33 -07:00
\begin{center}
\begin{tikzpicture}[scale = 1.25]
\node at (0.0, 0) {\texttt{X}};
\node at (0.5, 0) {\texttt{X}};
\node at (1.0, 0) {\texttt{X}};
\node at (1.5, 0) {\texttt{1}};
\node at (0.0, -0.5) {\texttt{X}};
\node at (0.5, -0.5) {\texttt{1}};
\node at (1.0, -0.5) {\texttt{0}};
\node at (1.5, -0.5) {\texttt{1}};
\node at (0.0, -1) {\texttt{X}};
\node at (0.5, -1) {\texttt{1}};
\node at (1.0, -1) {\texttt{0}};
\node at (1.5, -1) {\texttt{1}};
\node at (0.0, -1.5) {\texttt{1}};
\node at (0.5, -1.5) {\texttt{0}};
\node at (1.0, -1.5) {\texttt{0}};
\node at (1.5, -1.5) {\texttt{1}};
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw (0 - 0.2, 0 - 0.2)
-- (0 + 0.2, 0 - 0.2)
-- (0 + 0.2, 0 + 0.2)
-- (0 - 0.2, 0 + 0.2)
-- (0 - 0.2, 0 - 0.2);
\draw (0.5 - 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 - 0.2);
\draw (1 - 0.2, 0 - 0.2)
-- (1 + 0.2, 0 - 0.2)
-- (1 + 0.2, 0 + 0.2)
-- (1 - 0.2, 0 + 0.2)
-- (1 - 0.2, 0 - 0.2);
\draw (0 - 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 - 0.2);
\draw (0 - 0.2, -1 - 0.2)
-- (0 + 0.2, -1 - 0.2)
-- (0 + 0.2, -1 + 0.2)
-- (0 - 0.2, -1 + 0.2)
-- (0 - 0.2, -1 - 0.2);
\end{tikzpicture}
\end{center}
2023-06-25 18:28:08 -07:00
Bit \texttt{0001} will count the parity of all bits with a one in the first digit of their index. \par
Bit \texttt{0010} will count the parity of all bits with a one in the second digit of their index. \par
Bits \texttt{0100} and \texttt{1000} work in the same way. \par
\hint{In \texttt{0001}, \texttt{1} is the first digit. In \texttt{0010}, \texttt{1} is the second digit. \\
When counting bits in binary numbers, go from right to left.}
\problem{}
Which message bits does each parity bit cover? \par
In other words, which message bits affect the value of each parity bit? \par
\vspace{1mm}
Four diagrams are shown below. In each grid, fill in the bits that affect the shaded parity bit.
\begin{center}
\hfill
\begin{tikzpicture}[scale = 1.25]
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw[pattern=north east lines] (0.5 - 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 - 0.2);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale = 1.25]
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw[pattern=north east lines] (1 - 0.2, 0 - 0.2)
-- (1 + 0.2, 0 - 0.2)
-- (1 + 0.2, 0 + 0.2)
-- (1 - 0.2, 0 + 0.2)
-- (1 - 0.2, 0 - 0.2);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale = 1.25]
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw[pattern=north east lines] (0 - 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 - 0.2);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale = 1.25]
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw[pattern=north east lines] (0 - 0.2, -1 - 0.2)
-- (0 + 0.2, -1 - 0.2)
-- (0 + 0.2, -1 + 0.2)
-- (0 - 0.2, -1 + 0.2)
-- (0 - 0.2, -1 - 0.2);
\end{tikzpicture}
\hfill
\end{center}
\problem{}
Compute all parity bits in the message above.
\vfill
\pagebreak
2023-06-19 15:42:33 -07:00
\problem{}
2023-06-25 18:28:08 -07:00
Analyze this coding scheme.
\begin{itemize}
\item Can we detect one single-bit errors?
\item Can we detect two single-bit errors?
\item What errors can we correct?
\end{itemize}
2023-06-19 15:42:33 -07:00
\vfill
\problem{}
Each of the following messages has either 0, 1, or two errors. \par
2023-06-25 18:28:08 -07:00
Find the errors and correct them if possible. \par
\hint{Bit \texttt{0000} should tell you how many errors you have.}
2023-06-19 15:42:33 -07:00
\begin{center}
\hfill
\begin{tikzpicture}[scale = 1.25]
\node at (0.0, 0) {\texttt{0}};
\node at (0.5, 0) {\texttt{1}};
\node at (1.0, 0) {\texttt{1}};
\node at (1.5, 0) {\texttt{1}};
\node at (0.0, -0.5) {\texttt{0}};
\node at (0.5, -0.5) {\texttt{1}};
\node at (1.0, -0.5) {\texttt{1}};
\node at (1.5, -0.5) {\texttt{1}};
\node at (0.0, -1) {\texttt{0}};
\node at (0.5, -1) {\texttt{0}};
\node at (1.0, -1) {\texttt{1}};
\node at (1.5, -1) {\texttt{1}};
\node at (0.0, -1.5) {\texttt{1}};
\node at (0.5, -1.5) {\texttt{1}};
\node at (1.0, -1.5) {\texttt{1}};
\node at (1.5, -1.5) {\texttt{0}};
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw (0 - 0.2, 0 - 0.2)
-- (0 + 0.2, 0 - 0.2)
-- (0 + 0.2, 0 + 0.2)
-- (0 - 0.2, 0 + 0.2)
-- (0 - 0.2, 0 - 0.2);
\draw (0.5 - 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 - 0.2);
\draw (1 - 0.2, 0 - 0.2)
-- (1 + 0.2, 0 - 0.2)
-- (1 + 0.2, 0 + 0.2)
-- (1 - 0.2, 0 + 0.2)
-- (1 - 0.2, 0 - 0.2);
\draw (0 - 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 - 0.2);
\draw (0 - 0.2, -1 - 0.2)
-- (0 + 0.2, -1 - 0.2)
-- (0 + 0.2, -1 + 0.2)
-- (0 - 0.2, -1 + 0.2)
-- (0 - 0.2, -1 - 0.2);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale = 1.25]
\node at (0.0, 0) {\texttt{1}};
\node at (0.5, 0) {\texttt{1}};
\node at (1.0, 0) {\texttt{0}};
\node at (1.5, 0) {\texttt{1}};
\node at (0.0, -0.5) {\texttt{1}};
\node at (0.5, -0.5) {\texttt{0}};
\node at (1.0, -0.5) {\texttt{1}};
\node at (1.5, -0.5) {\texttt{0}};
\node at (0.0, -1) {\texttt{0}};
\node at (0.5, -1) {\texttt{1}};
\node at (1.0, -1) {\texttt{1}};
\node at (1.5, -1) {\texttt{0}};
\node at (0.0, -1.5) {\texttt{1}};
\node at (0.5, -1.5) {\texttt{1}};
\node at (1.0, -1.5) {\texttt{0}};
\node at (1.5, -1.5) {\texttt{1}};
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw (0 - 0.2, 0 - 0.2)
-- (0 + 0.2, 0 - 0.2)
-- (0 + 0.2, 0 + 0.2)
-- (0 - 0.2, 0 + 0.2)
-- (0 - 0.2, 0 - 0.2);
\draw (0.5 - 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 - 0.2);
\draw (1 - 0.2, 0 - 0.2)
-- (1 + 0.2, 0 - 0.2)
-- (1 + 0.2, 0 + 0.2)
-- (1 - 0.2, 0 + 0.2)
-- (1 - 0.2, 0 - 0.2);
\draw (0 - 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 - 0.2);
\draw (0 - 0.2, -1 - 0.2)
-- (0 + 0.2, -1 - 0.2)
-- (0 + 0.2, -1 + 0.2)
-- (0 - 0.2, -1 + 0.2)
-- (0 - 0.2, -1 - 0.2);
\end{tikzpicture}
\hfill
\begin{tikzpicture}[scale = 1.25]
\node at (0.0, 0) {\texttt{0}};
\node at (0.5, 0) {\texttt{1}};
\node at (1.0, 0) {\texttt{1}};
\node at (1.5, 0) {\texttt{1}};
\node at (0.0, -0.5) {\texttt{1}};
\node at (0.5, -0.5) {\texttt{0}};
\node at (1.0, -0.5) {\texttt{1}};
\node at (1.5, -0.5) {\texttt{1}};
\node at (0.0, -1) {\texttt{1}};
\node at (0.5, -1) {\texttt{0}};
\node at (1.0, -1) {\texttt{1}};
\node at (1.5, -1) {\texttt{1}};
\node at (0.0, -1.5) {\texttt{1}};
\node at (0.5, -1.5) {\texttt{0}};
\node at (1.0, -1.5) {\texttt{0}};
\node at (1.5, -1.5) {\texttt{0}};
\draw (-0.25, 0.25) -- (1.75, 0.25);
\draw (-0.25, -0.25) -- (1.75, -0.25);
\draw (-0.25, -0.75) -- (1.75, -0.75);
\draw (-0.25, -1.25) -- (1.75, -1.25);
\draw (-0.25, -1.75) -- (1.75, -1.75);
\draw (-0.25, 0.25) -- (-0.25, -1.75);
\draw (0.25, 0.25) -- (0.25, -1.75);
\draw (0.75, 0.25) -- (0.75, -1.75);
\draw (1.25, 0.25) -- (1.25, -1.75);
\draw (1.75, 0.25) -- (1.75, -1.75);
\draw (0 - 0.2, 0 - 0.2)
-- (0 + 0.2, 0 - 0.2)
-- (0 + 0.2, 0 + 0.2)
-- (0 - 0.2, 0 + 0.2)
-- (0 - 0.2, 0 - 0.2);
\draw (0.5 - 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 - 0.2)
-- (0.5 + 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 + 0.2)
-- (0.5 - 0.2, 0 - 0.2);
\draw (1 - 0.2, 0 - 0.2)
-- (1 + 0.2, 0 - 0.2)
-- (1 + 0.2, 0 + 0.2)
-- (1 - 0.2, 0 + 0.2)
-- (1 - 0.2, 0 - 0.2);
\draw (0 - 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 - 0.2)
-- (0 + 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 + 0.2)
-- (0 - 0.2, -0.5 - 0.2);
\draw (0 - 0.2, -1 - 0.2)
-- (0 + 0.2, -1 - 0.2)
-- (0 + 0.2, -1 + 0.2)
-- (0 - 0.2, -1 + 0.2)
-- (0 - 0.2, -1 - 0.2);
\end{tikzpicture}
\hfill
\end{center}
\begin{solution}
\textbf{1:} Single error at position \texttt{1010} \par
\textbf{2:} Double error \par
\textbf{3:} No error \par
\end{solution}
\vfill
\pagebreak
\problem{}
2023-06-25 18:28:08 -07:00
How many parity bits does each message bit affect? \par
2023-06-19 15:42:33 -07:00
Does this correlate with that message bit's index?
\vfill
\problem{}
Say we have a message with exactly one single-bit error. \par
If we know which parity bits are inconsistent, how can we find where the error is?
2023-06-20 10:07:35 -07:00
\vfill
\problem{}<generalize-hamming>
Can you generalize this system for messages of 4, 64, or 256 bits?
\vfill
2023-06-19 15:42:33 -07:00
\pagebreak