168 lines
4.1 KiB
TeX
Raw Normal View History

2025-01-09 11:09:27 -08:00
\section{Fibonacci}
\definition{}
The \textit{Fibonacci numbers} are defined by the following recurrence relation:
\begin{itemize}
\item $f_0 = 0$
\item $f_1 = 1$
\item $f_n = f_{n-1} + f_{n-2}$
\end{itemize}
\problem{}
Let $F(x)$ be the generating function that corresponds to the Fibonacci numbers. \par
Find the generating function of $0, f_0, f_1, ...$ in terms of $F(x)$. \par
Call this $G(x)$.
\begin{solution}
\begin{equation*}
G(x) = xF(x)
\end{equation*}
\end{solution}
\vfill
\problem{}
Find the generating function of $0, 0, f_0, f_1, ...$ in terms of $F(x)$.
Call this $H(x)$.
\begin{solution}
\begin{equation*}
H(x) = x^2F(x)
\end{equation*}
\end{solution}
\vfill
\problem{}
Calculate $F(x) - G(x) - H(x)$ using the recurrence relation that
we used to define the Fibonacci numbers.
\begin{solution}
\begin{align*}
F(x) - G(x) - H(x)
&=~ f_0 + (f_1 - f_0)x + (f_2 - f_1 - f_0)x^2 + (f_3 - f_2 - f_1)x^3 + ... \\
&=~ f_0 + (f_1 - f_0)x \\
&=~ x
\end{align*}
\end{solution}
\vfill
\pagebreak
2025-01-16 16:49:45 -08:00
\problem{}<fibo>
2025-01-09 11:09:27 -08:00
Using the problems on the previous page, find $F(x)$ in terms of $x$.
\begin{solution}
\begin{align*}
x
&=~ F(x) - G(x) - H(x) \\
&=~ F(x) - xF(x) - x^2F(x) \\
&=~ F(x)(1-x-x^2)
\end{align*}
So,
\begin{equation*}
F(x) = \frac{x}{1-x-x^2}
\end{equation*}
\end{solution}
\vfill
\definition{}
A \textit{rational function} $f$ is a function that can be written as a quotient of polynomials. \par
That is, $f(x) = \frac{p(x)}{q(x)}$ where $p$ and $q$ are polynomials.
\problem{}
2025-01-16 16:49:45 -08:00
Solve the equation from \ref<fibo> for $F(x)$, expressing it as a rational function.
2025-01-09 11:09:27 -08:00
\begin{solution}
\begin{align*}
F(x)
&=~ \frac{-x}{x^2+x-1} = \frac{-x}{(x-a)(x-b)} \\
&=~ \frac{1 - \sqrt{5}}{2\sqrt{5}}\frac{1}{x-a} + \frac{-1 - \sqrt{5}}{2\sqrt{5}}\frac{1}{x-b}
\end{align*}
where
\begin{equation*}
a = \frac{-1 + \sqrt{5}}{2} ;~~
b = \frac{-1 - \sqrt{5}}{2}
\end{equation*}
\end{solution}
\vfill
\pagebreak
2025-01-16 16:49:45 -08:00
\definition{}
\textit{Partial fraction decomposition} is an algebreic technique that works as follows: \par
If $p(x)$ is a polynomial and $a$ and $b$ are constants,
we can rewrite the rational function $\frac{p(x)}{(x-a)(x-b)}$ as follows:
2025-01-09 11:09:27 -08:00
\begin{equation*}
2025-01-16 16:49:45 -08:00
\frac{p(x)}{(x-a)(x-b)} = \frac{c}{x-a} + \frac{d}{x-b}
2025-01-09 11:09:27 -08:00
\end{equation*}
where $c$ and $d$ are constants.
2025-01-16 16:49:45 -08:00
\problem{}<pfd>
Now that we have a rational function for $F(x)$, \par
find a closed-form expression for its coefficients using partial fraction decomposition.
2025-01-09 11:09:27 -08:00
\begin{solution}
\begin{align*}
F(x)
&=~
\left(\frac{1 - \sqrt{5}}{2\sqrt{5}}\right)\left(\frac{-1}{a}\right)\left(\frac{1}{1-\frac{x}{a}}\right)
+ \left(\frac{-1 - \sqrt{5}}{2\sqrt{5}}\right)\left(\frac{-1}{b}\right)\left(\frac{1}{1-\frac{x}{b}}\right) \\
&=~
\left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{1-\frac{x}{a}}\right)
+ \left(\frac{-1}{\sqrt{5}}\right)\left(\frac{1}{1-\frac{x}{b}}\right) \\
&=~
\frac{1}{\sqrt{5}}\left(1 + \frac{x}{a} + \left(\frac{x}{a}\right)^2 + ...\right)
- \frac{1}{\sqrt{5}}\left(1 + \frac{x}{b} + \left(\frac{x}{b}\right)^2 + ...\right)
\end{align*}
\end{solution}
\vfill
\problem{}
Using problems from the introduction and \ref{pfd}, find an expression
for the coefficients of $F(x)$ (and this, for the Fibonacci numbers).
\begin{solution}
\begin{align*}
f_0 &= \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{5}} = 0 \\
f_1 &= \frac{1}{a\sqrt{5}} - \frac{1}{b\sqrt{5}} = 1 \\
f_n &= \frac{1}{\sqrt{5}}\left(\frac{1}{a^n} - \frac{1}{b^n}\right)
= \frac{1}{\sqrt{5}}\left(
\left(\frac{1 + \sqrt{5}}{2}\right)^n
- \left(\frac{1-\sqrt{5}}{2}\right)^n
\right)
\end{align*}
\end{solution}
\vfill
\pagebreak
\problem{Bonus}
Repeat the method of recurrence, generating function,
partial fraction decomposition, and geometric series
to find a closed form for the following sequence:
\begin{equation*}
a_0 = 1 ;~~ a_{n+1} = 2a_n + n
\end{equation*}
\hint{
When doing partial fraction decomposition with a
denominator of the form $(x-a)^2(x-b)$,
you may need to express your expression as a sum of three fractions:
$\frac{c}{(x-a)^2} + \frac{d}{x-a} + \frac{e}{x-b}$.`'
}
\vfill
\pagebreak