630 lines
20 KiB
TeX
Raw Normal View History

2023-05-06 10:19:14 -07:00
\section{DFAs}
This week, we will study computational devices called \textit{deterministic finite automata}. \par
A DFA has a simple job: it will either \say{accept} or \say{reject} a string of letters.
\vspace{2mm}
Consider the automaton $A$ shown below:
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[main] (a) at (0, 0) {$a$};
\node[accept] (b) at (2, 0) {$b$};
\node[main] (c) at (5, 0) {$c$};
2023-05-14 09:42:14 -07:00
\node[start] (s) at (-2, 0) {\texttt{start}};
2023-05-06 10:19:14 -07:00
\end{scope}
\draw[->]
2023-05-14 09:42:14 -07:00
(s) edge (a)
2023-05-06 10:19:14 -07:00
(a) edge node[label] {$1$} (b)
(a) edge[loop above] node[label] {$0$} (a)
(b) edge[bend left] node[label] {$0$} (c)
(b) edge[loop above] node[label] {$1$} (b)
(c) edge[bend left] node[label] {$0,1$} (b)
;
\end{tikzpicture}
\end{center}
2023-05-14 09:42:14 -07:00
$A$ takes strings of letters in the alphabet $\{0, 1\}$ and reads them left to right, one letter at a time. \par
Starting in the state $a$, the automaton $A$ will move between states along the edge marked by each letter. \par
2023-05-06 10:19:14 -07:00
2023-05-14 09:42:14 -07:00
\vspace{2mm}
Note that node $b$ has a \say{double edge} in the diagram above. This means that the state $b$ is \textit{accepting}. Any string that makes $A$ end in state $b$ is \textit{accepted}. Similarly, strings that end in states $a$ or $c$ are \textit{rejected}. \par
2023-05-06 10:19:14 -07:00
2023-05-14 09:42:14 -07:00
\vspace{2mm}
For example, consider the string \texttt{1011}. \par
$A$ will go through the states $a - b - c - b - b$ while processing this string. \par
2023-05-06 10:19:14 -07:00
\problem{}
Which of the following strings are accepted by $A$? \\
\begin{itemize}
\item \texttt{1}
\item \texttt{1010}
\item \texttt{1110010}
\item \texttt{1000100}
\end{itemize}
\vfill
\problem{}
2023-05-14 09:42:14 -07:00
Describe the general form of a string accepted by $A$. \par
2023-05-06 10:19:14 -07:00
\hint{Work backwards from the accepting state, and decide what all the strings must look like at the end in order to be accepted.}
\begin{solution}
$A$ will accept strings that contain at least one $1$ and end with an even (possibly 0) number of zeroes.
\end{solution}
\vfill
\pagebreak
Now consider the automaton $B$, which uses the alphabet $\{a, b\}$. \par
It starts in the state $s$ and has two accepting states $a_1$ and $b_1$.
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[main] (s) at (0, 0) {$s$};
\node[accept] (a1) at (-2, -0.5) {$a_1$};
\node[main] (a2) at (-2, -2.5) {$a_2$};
\node[accept] (b1) at (2, -0.5) {$b_1$};
\node[main] (b2) at (2, -2.5) {$b_2$};
2023-05-14 09:42:14 -07:00
\node[start] (start) at (0, 1) {\texttt{start}};
2023-05-06 10:19:14 -07:00
\end{scope}
2023-05-14 09:42:14 -07:00
\clip (-4, -3.5) rectangle (4, 1);
2023-05-06 10:19:14 -07:00
\draw[->]
2023-05-14 09:42:14 -07:00
(start) edge (s)
2023-05-06 10:19:14 -07:00
(s) edge node[label] {\texttt{a}} (a1)
(a1) edge[loop left] node[label] {\texttt{a}} (a1)
(a1) edge[bend left] node[label] {\texttt{b}} (a2)
(a2) edge[bend left] node[label] {\texttt{a}} (a1)
(a2) edge[loop left] node[label] {\texttt{b}} (a2)
(s) edge node[label] {\texttt{b}} (b1)
(b1) edge[loop right] node[label] {\texttt{b}} (b1)
(b1) edge[bend left] node[label] {\texttt{a}} (b2)
(b2) edge[bend left] node[label] {\texttt{b}} (b1)
(b2) edge[loop right] node[label] {\texttt{a}} (b2)
;
\end{tikzpicture}
\end{center}
\problem{}
Which of the following strings are accepted by $B$:
\begin{itemize}
\item \texttt{aa}
\item \texttt{abba}
\item \texttt{abbba}
\item \texttt{baabab}
\end{itemize}
\vfill
2023-05-19 17:03:20 -07:00
\problem{}<SameStartAndEnd>
2023-05-06 10:19:14 -07:00
Describe the strings accepted by $B$.
\begin{solution}
2023-05-14 09:42:14 -07:00
$B$ accepts strings that start and end with the same letter.
2023-05-06 10:19:14 -07:00
\end{solution}
\vfill
\pagebreak
2023-05-19 17:03:20 -07:00
\problem{}<fibonacci>
2023-05-06 10:19:14 -07:00
How many strings of length $n$ are accepted by the automaton $C$?
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[main] (0) at (0, 0) {$0$};
\node[accept] (1) at (3, 0) {$1$};
\node[main] (2) at (5, 0) {$2$};
2023-05-14 09:42:14 -07:00
\node[start] (s) at (-2, 0) {\texttt{start}};
2023-05-06 10:19:14 -07:00
\end{scope}
\draw[->]
2023-05-14 09:42:14 -07:00
(s) edge (0)
(0) edge[loop above] node[label] {\texttt{b}} (0)
(0) edge[bend left] node[label] {\texttt{a}} (1)
(1) edge[bend left] node[label] {\texttt{b}} (0)
(1) edge node[label] {\texttt{a}} (2)
(2) edge[loop above] node[label] {\texttt{a,b}} (2)
2023-05-06 10:19:14 -07:00
;
\end{tikzpicture}
\end{center}
\begin{solution}
2023-05-14 09:42:14 -07:00
If $A_n$ is the number of accepted strings of length $n$, then $A_n = A_{n-1}+A_{n-2}$. \par
Computing initial conditions, we see that $A_n$ is an $n+2$-th Fibonacci number.
2023-05-06 10:19:14 -07:00
\end{solution}
%\begin{remark}
%Note that all the states in our DFAs $A$, $B$ and $C$ from figures 1, 2, 3 have outgoing symbols for each letter of the alphabet. %Do the same for your DFAs.
%\end{remark}
\vfill
2023-05-19 17:03:20 -07:00
\definition{}
An \textit{alphabet} is a finite set of symbols. \par
\definition{}
A \textit{string} over an alphabet $Q$ is a finite sequence of symbols from $Q$. \par
We denote the empty string $\varepsilon$. \par
\vspace{2mm}
$Q^*$ is the set of all possible strings over $Q$. \par
For example, $\{\texttt{0}, \texttt{1}\}^*$ is the set $\{\varepsilon, \texttt{0}, \texttt{1}, \texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}, \texttt{000},... \}$ \par
Note that this set contains the empty string.
\definition{}
A \textit{language} over an alphabet $Q$ is a subset of $Q^*$. \\
For example, the language \say{strings of length 2} over $\{\texttt{0}, \texttt{1}\}$ is $\{\texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}\}$
\definition{}
We say a language $L$ is \textit{recognized} by a DFA if that DFA accepts a string $w$ if and only if $w \in L$.
2023-05-06 10:19:14 -07:00
\pagebreak
\problem{}
2023-05-14 09:42:14 -07:00
Draw DFAs that recognize the following languages. In all parts, the alphabet is $\{0, 1\}$:
2023-05-06 10:19:14 -07:00
\begin{itemize}
\item $\{w~ | ~w~ \text{begins with a \texttt{1} and ends with a \texttt{0}}\}$
\item $\{w~ | ~w~ \text{contains at least three \texttt{1}s}\}$
\item $\{w~ | ~w~ \text{contains the substring \texttt{0101} (i.e, $w = x\texttt{0101}y$ for some $x$ and $y$)}\}$
\item $\{w~ | ~w~ \text{has length at least three and its third symbol is a \texttt{0}}\}$
\item $\{w~ | ~w~ \text{starts with \texttt{0} and has odd length, or starts with \texttt{1} and has even length}\}$
\item $\{w~ | ~w~ \text{doesn't contain the substring \texttt{110}}\}$
\end{itemize}
\begin{solution}
2023-05-14 09:42:14 -07:00
$\{w~ | ~w~ \text{begins with a \texttt{1} and ends with a \texttt{0}}\}$
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[accept] (0) at (0, 2) {$\phantom{0}$};
\node[main] (1) at (3, 2) {$\phantom{0}$};
\node[main] (2) at (0, 0) {$\phantom{0}$};
\node[main] (3) at (3, 0) {$\phantom{0}$};
\node[start] (s) at (-2, 0) {\texttt{start}};
\end{scope}
\clip (-2, -1) rectangle (4.5, 3);
\draw[->]
(s) edge (2)
(0) edge[loop left] node[label] {\texttt{1}} (0)
(0) edge[bend left] node[label] {\texttt{1}} (1)
(1) edge[loop right] node[label] {\texttt{1}} (1)
(1) edge[bend left] node[label] {\texttt{0}} (0)
(2) edge[out=90, in=270] node[label] {\texttt{1}} (1)
(2) edge node[label] {\texttt{0}} (3)
(3) edge[loop right] node[label] {\texttt{1,0}} (3)
;
\end{tikzpicture}
\end{center}
\linehack{}
$\{w~ | ~w~ \text{contains at least three \texttt{1}s}\}$
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (s) at (-2, 0) {\texttt{start}};
\node[main] (0) at (0, 0) {$\phantom{0}$};
\node[main] (1) at (2, 0) {$\phantom{0}$};
\node[main] (2) at (4, 0) {$\phantom{0}$};
\node[accept] (3) at (6, 0) {$\phantom{0}$};
\end{scope}
\draw[->]
(s) edge (0)
(0) edge[loop above] node[label] {\texttt{0}} (0)
(1) edge[loop above] node[label] {\texttt{0}} (1)
(2) edge[loop above] node[label] {\texttt{0}} (2)
(3) edge[loop above] node[label] {\texttt{0,1}} (3)
(0) edge node[label] {\texttt{1}} (1)
(1) edge node[label] {\texttt{1}} (2)
(2) edge node[label] {\texttt{1}} (3)
;
\end{tikzpicture}
\end{center}
\linehack{}
$\{w~ | ~w~ \text{contains the substring \texttt{0101}}\}$
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (s) at (-2, 0) {\texttt{start}};
\node[main] (0) at (0, 0) {$\phantom{0}$};
\node[main] (1) at (2, 1) {$\phantom{0}$};
\node[main] (2) at (4, 1) {$\phantom{0}$};
\node[main] (3) at (0, 3) {$\phantom{0}$};
\node[accept] (4) at (2, 3) {$\phantom{0}$};
\end{scope}
% Tikz includes invisible handles in picture size.
% This crops the image to fix sizing.
\clip (-2, -1.75) rectangle (5, 5.25);
\draw[->]
(s) edge (0)
(0) edge[loop above] node[label] {\texttt{1}} (0)
(0) edge[bend right] node[label] {\texttt{0}} (1)
(1) edge[loop above] node[label] {\texttt{0}} (1)
(1) edge node[label] {\texttt{1}} (2)
(3) edge[bend right] node[label] {\texttt{0}} (1)
(3) edge node[label] {\texttt{1}} (4)
(4) edge[loop above] node[label] {\texttt{0,1}} (4)
;
\draw[->, rounded corners = 10mm]
(2) to (4, 5) to node[label] {\texttt{0}} (0, 5) to (3)
;
\draw[->, rounded corners = 10mm]
(2) to (4, -1.5) to node[label] {\texttt{1}} (0, -1.5) to (0)
;
\end{tikzpicture}
\end{center}
2023-05-06 10:19:14 -07:00
Notice that after getting two 0's in a row we don't reset to the initial state.
2023-05-14 09:42:14 -07:00
\pagebreak
$\{w~ | ~w~ \text{has length at least three and its third symbol is a \texttt{0}}\}$
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (s) at (-2, 0) {\texttt{start}};
\node[main] (0) at (0, 0) {$\phantom{0}$};
\node[main] (1) at (2, 0) {$\phantom{0}$};
\node[main] (2) at (4, 0) {$\phantom{0}$};
\node[accept] (3) at (6, 1) {$\phantom{0}$};
\node[accept] (4) at (6, -1) {$\phantom{0}$};
\end{scope}
\clip (-2, -2.5) rectangle (7, 2.5);
\draw[->]
(s) edge (0)
(0) edge node[label] {\texttt{0,1}} (1)
(1) edge node[label] {\texttt{0,1}} (2)
(2) edge node[label] {\texttt{0}} (3)
(2) edge node[label] {\texttt{1}} (4)
(3) edge[loop above] node[label] {\texttt{0,1}} (3)
(4) edge[loop below] node[label] {\texttt{0,1}} (4)
;
\end{tikzpicture}
\end{center}
\linehack{}
$\{w~ | ~w~ \text{starts with \texttt{0} and has odd length, or starts with \texttt{1} and has even length}\}$
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (s) at (-2, 0) {\texttt{start}};
\node[main] (0) at (0, 0) {$\phantom{0}$};
\node[accept] (1) at (2, 1) {$\phantom{0}$};
\node[main] (2) at (4, 1) {$\phantom{0}$};
\end{scope}
\draw[->]
(s) edge (0)
(0) edge node[label] {\texttt{0}} (1)
(1) edge[bend left] node[label] {\texttt{0,1}} (2)
(2) edge[bend left] node[label] {\texttt{0,1}} (1)
;
\draw[->, rounded corners = 5mm]
(0) to node[label] {\texttt{1}} (4, 0) to (2)
;
\end{tikzpicture}
\end{center}
\linehack{}
$\{w~ | ~w~ \text{doesn't contain the substring \texttt{110}}\}$
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (s) at (-2, 0){\texttt{start}};
\node[accept] (0) at (0, 0) {$\phantom{0}$};
\node[accept] (1) at (2, 0) {$\phantom{0}$};
\node[accept] (2) at (4, 0) {$\phantom{0}$};
\node[main] (3) at (6, 0) {$\phantom{0}$};
\end{scope}
\draw[->]
(s) edge (0)
(0) edge[loop above] node[label] {\texttt{0}} (0)
(2) edge[loop above] node[label] {\texttt{1}} (2)
(3) edge[loop above] node[label] {\texttt{0,1}} (3)
(0) edge[bend left] node[label] {\texttt{1}} (1)
(1) edge[bend left] node[label] {\texttt{0}} (0)
(1) edge node[label] {\texttt{1}} (2)
(2) edge node[label] {\texttt{0}} (3)
;
\end{tikzpicture}
\end{center}
2023-05-06 10:19:14 -07:00
Notice that after getting three 1's in a row we don't reset to the initial state.
\end{solution}
\vfill
2023-05-14 09:42:14 -07:00
\pagebreak
2023-05-06 10:19:14 -07:00
\problem{}
Draw a DFA over an alphabet $\{\texttt{a}, \texttt{b}, \texttt{@}, \texttt{.}\}$ recognizing the language of strings of the form \texttt{user@website.domain}, where \texttt{user}, \texttt{website} and \texttt{domain} are nonempty strings over $\{\texttt{a}, \texttt{b}\}$ and \texttt{domain} has length 2 or 3.
\begin{solution}
2023-05-14 09:42:14 -07:00
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (start) at (-2, 0) {\texttt{start}};
\node[main] (0) at (0, 0) {$\phantom{0}$};
\node[main] (1) at (0, 2) {$\phantom{0}$};
\node[main] (2) at (0, 4) {$\phantom{0}$};
\node[main] (3) at (0, 6) {$\phantom{0}$};
\node[main] (4) at (0, 8) {$\phantom{0}$};
\node[main] (5) at (0, 10) {$\phantom{0}$};
\node[accept] (6) at (0, 12) {$\phantom{0}$};
\node[accept] (7) at (0, 14) {$\phantom{0}$};
\node[main] (8) at (5, 7) {$\phantom{0}$};
\end{scope}
\draw[->]
(start) edge (0)
(0) edge node[label] {\texttt{a,b}} (1)
(1) edge node[label] {\texttt{@}} (2)
(2) edge node[label] {\texttt{a,b}} (3)
(3) edge node[label] {\texttt{.}} (4)
(4) edge node[label] {\texttt{a,b}} (5)
(5) edge node[label] {\texttt{a,b}} (6)
(6) edge node[label] {\texttt{a,b}} (7)
(1) edge[loop left] node[label] {\texttt{a,b}} (1)
(3) edge[loop left] node[label] {\texttt{a,b}} (3)
(0) edge[out=0, in=270] node[label] {\texttt{@,.}} (8)
(1) edge[out=0, in=245] node[label] {\texttt{.}} (8)
(2) edge[out=0, in=220] node[label] {\texttt{@,.}} (8)
(3) edge[out=0, in=195] node[label] {\texttt{@}} (8)
(4) edge[out=0, in=170] node[label] {\texttt{@,.}} (8)
(5) edge[out=0, in=145] node[label] {\texttt{@,.}} (8)
(6) edge[out=0, in=120] node[label] {\texttt{@,.}} (8)
(7) edge[out=0, in=95] node[label] {\texttt{a,b,@,.}} (8)
;
\draw[->, rounded corners = 5mm]
(8) to +(1.5, 1) to node[label] {\texttt{a,b,@,.}} +(1.5, -1) to (8)
;
\end{tikzpicture}
\end{center}
2023-05-06 10:19:14 -07:00
\end{solution}
\vfill
\pagebreak
\problem{}
2023-05-14 09:42:14 -07:00
Draw a state diagram for a DFA over an alphabet of your choice that accepts exactly $f(n)$ strings of length $n$ if \\
2023-05-06 10:19:14 -07:00
\begin{itemize}
\item $f(n) = n$
\item $f(n) = n+1$
\item $f(n) = 3^n$
\item $f(n) = n^2$
\item $f(n)$ is a Tribonacci number. \par
2023-05-14 09:42:14 -07:00
Tribonacci numbers are defined by the sequence $f(0) = 0$, $f(1) = 1$, $f(2) = 1$,
2023-05-06 10:19:14 -07:00
and $f(n) = f(n-1)+f(n-2)+f(n-3)$ for $n \ge 3$ \par
2023-05-14 09:42:14 -07:00
\hint{Fibonacci numbers are given by the automaton prohibiting two \texttt{'a'}s in a row.}
2023-05-06 10:19:14 -07:00
\end{itemize}
\begin{solution}
2023-05-14 09:42:14 -07:00
\textbf{Part 4:} $f(n) = n^2$ \par
Consider the language of words over $\{0, 1, 2\}$ that have the sum of their digits equal to $2$. \par
Such words must contain two ones or one two:
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (start) at (-2, 0) {\texttt{start}};
\node[main] (0) at (0, 0) {$\phantom{0}$};
\node[accept] (1) at (2, 0) {$\phantom{0}$};
\node[main] (2) at (0, -2) {$\phantom{0}$};
\node[main] (3) at (2, -2) {$\phantom{0}$};
\end{scope}
\clip (-2, 1.5) rectangle (4, -2.75);
\draw[->]
(start) edge (0)
(0) edge[loop above] node[label] {\texttt{0}} (0)
(1) edge[loop above] node[label] {\texttt{0}} (1)
(2) edge[loop left] node[label] {\texttt{0}} (2)
(3) edge[loop right] node[label] {\texttt{0,1,2}} (3)
(0) edge node[label] {\texttt{2}} (1)
(0) edge node[label] {\texttt{1}} (2)
(1) edge node[label] {\texttt{1,2}} (3)
(2) edge node[label] {\texttt{1}} (1)
(2) edge node[label] {\texttt{2}} (3)
;
\end{tikzpicture}
\end{center}
\linehack{}
\textbf{Part 5:} Tribonacci numbers \par
Using the hint, we get the following automaton. \par
It rejects all strings with three \texttt{'a'}s in a row.
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (start) at (-2, 0) {\texttt{start}};
\node[accept] (0) at (0, 0) {$\phantom{0}$};
\node[accept] (1) at (0, 2) {$\phantom{0}$};
\node[accept] (2) at (2, 0) {$\phantom{0}$};
\node[main] (3) at (4, 0) {$\phantom{0}$};
\end{scope}
\draw[->]
(start) edge (0)
(0) edge[loop below] node[label] {\texttt{b}} (0)
(3) edge[loop above] node[label] {\texttt{a,b}} (3)
(0) edge[bend left] node[label] {\texttt{a}} (1)
(1) edge[bend left] node[label] {\texttt{b}} (0)
(1) edge[bend left] node[label] {\texttt{a}} (2)
(2) edge node[label] {\texttt{a}} (3)
(2) edge node[label] {\texttt{b}} (0)
;
\end{tikzpicture}
\end{center}
This automaton rejects all strings with three \texttt{'a'}s in a row. If we count accepted strings, we get the Tribonacci numbers with an offest: $f(0) = 1$, $f(1) = 2$, $f(2)=4$, ... \par
\pagebreak
We can fix this by adding a node and changing the start state:
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (start) at (1, -2) {\texttt{start}};
\node[accept] (0) at (0, 0) {$\phantom{0}$};
\node[accept] (1) at (0, 2) {$\phantom{0}$};
\node[accept] (2) at (2, 0) {$\phantom{0}$};
\node[main] (3) at (4, 0) {$\phantom{0}$};
\node[main] (4) at (3, -2) {$\phantom{0}$};
\end{scope}
\draw[->]
(start) edge (4)
(2) edge node[label] {\texttt{b}} (0)
(4) edge node[label] {\texttt{b}} (2)
(4) edge node[label] {\texttt{a}} (3)
(0) edge[loop below] node[label] {\texttt{b}} (0)
(3) edge[loop above] node[label] {\texttt{a,b}} (3)
(0) edge[bend left] node[label] {\texttt{a}} (1)
(1) edge[bend left] node[label] {\texttt{b}} (0)
(1) edge[bend left] node[label] {\texttt{a}} (2)
(2) edge node[label] {\texttt{a}} (3)
(2) edge node[label] {\texttt{b}} (0)
;
\end{tikzpicture}
\end{center}
2023-05-06 10:19:14 -07:00
\end{solution}
\vfill
2023-05-14 09:42:14 -07:00
\pagebreak
2023-05-06 10:19:14 -07:00
% \problem{}
% Draw a DFA over an alphabet $\{a, b, c\}$, accepting all the suffixes of the string $abbc$ (including $\varepsilon$) and only them.
\problem{}
Draw a DFA recognizing the language of strings over $\{\texttt{0}, \texttt{1}\}$ in which \texttt{0} is the third digit from the end. \par
Prove that any such DFA must have at least 8 states.
2023-05-14 09:42:14 -07:00
\begin{solution}
2023-05-06 10:19:14 -07:00
\textbf{Part 1:} \par
2023-05-14 09:42:14 -07:00
Index the states by three-letter suffixes \texttt{000}, \texttt{001}, ..., \texttt{111}. All strings that end with letters $d_1d_2d_3$ will end up in the state $d_1d_2d_3$. We accept all states that start with a \texttt{0}. \par
Note that we can start at any node if we ignore strings with fewer than three letters.
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\node[start] (start) at (-2, 0) {\texttt{start}};
\node[main] (7) at (0, 0) {\texttt{111}};
\node[accept] (3) at (0, -2) {\texttt{011}};
\node[main] (6) at (2, -2) {\texttt{110}};
\node[main] (4) at (4, -2) {\texttt{100}};
\node[accept] (1) at (-4, -4) {\texttt{001}};
\node[main] (5) at (0, -4) {\texttt{101}};
\node[accept] (2) at (-2, -4) {\texttt{010}};
\node[accept] (0) at (-2, -6) {\texttt{000}};
\end{scope}
\draw[->]
(0) edge[loop left, looseness = 7] node[label] {\texttt{0}} (0)
(7) edge[loop above, looseness = 7] node[label] {\texttt{1}} (7)
(start) edge (7)
(0) edge[out=90,in=-90] node[label] {\texttt{1}} (1)
(1) edge node[label] {\texttt{0}} (2)
(1) edge[out=45,in=-135] node[label] {\texttt{1}} (3)
(2) edge[bend left] node[label] {\texttt{1}} (5)
(3) edge node[label] {\texttt{0}} (6)
(3) edge node[label] {\texttt{1}} (7)
(5) edge[bend left] node[label] {\texttt{0}} (2)
(5) edge node[label] {\texttt{1}} (3)
(6) edge[bend left] node[label] {\texttt{0}} (4)
(6) edge[out=-90,in=0] node[label] {\texttt{1}} (5)
(7) edge[out=0,in=90] node[label] {\texttt{0}} (6)
;
\draw[->, rounded corners = 10mm]
(4) to (4, 2) to node[label] {\texttt{1}} (-4, 2) to (1)
;
\draw[->, rounded corners = 10mm]
(4) to (4, -6) to node[label] {\texttt{0}} (0)
;
\draw[->, rounded corners = 5mm]
(2) to (-2, -5) to node[label] {\texttt{0}} (3, -5) to (3, -2) to (4)
;
\end{tikzpicture}
\end{center}
2023-05-06 10:19:14 -07:00
\linehack{}
\textbf{Part 2:} \par
2023-05-14 09:42:14 -07:00
Strings \texttt{000}, \texttt{001}, ..., \texttt{111} must lead to pairwise different states. \par
\vspace{2mm}
Assume \texttt{101} and \texttt{010} lead to the same state. Append a \texttt{1} to the end of the string. \par
\texttt{101} will become \texttt{011}, and \texttt{010} will become \texttt{101}. These must be different states, since we accept \texttt{011} and reject \texttt{101}. We now have a contradiction: one edge cannot lead to two states!
\vspace{2mm}
\texttt{101} and \texttt{010} must thus correspond to distinct states. \par
We can repeat this argument for any other pair of strings. \par
2023-05-06 10:19:14 -07:00
\end{solution}
\vfill
\pagebreak