2024-03-20 19:38:35 -07:00
|
|
|
\section{Line Graphs}
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Given a graph $G$, we can construct its \textit{line graph} (denoted $\mathcal{L}(G)$) by doing the following: \par
|
|
|
|
\begin{itemize}
|
|
|
|
\item Creating a node in $\mathcal{L}(G)$ for each edge in $G$
|
|
|
|
\item Drawing a directed edge between every pair of nodes $a, b$ in $\mathcal{L}(G)$ \par
|
|
|
|
if the corresponding edges in $G$ are adjacent. \par
|
|
|
|
\note{That is, if edge $b$ in $G$ starts at the node at which $a$ ends.}
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Draw the line graph for the graph below. \par
|
|
|
|
Have an instructor check your solution.
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{scope}[layer = nodes]
|
|
|
|
\node[main] (a) at (0, 0) {$a$};
|
|
|
|
\node[main] (b) at (2, 0) {$b$};
|
|
|
|
\node[main] (c) at (4, 0) {$c$};
|
|
|
|
\end{scope}
|
|
|
|
|
|
|
|
\draw[->]
|
|
|
|
(a) edge[bend left] node[label] {$0$} (b)
|
|
|
|
(b) edge[bend left] node[label] {$1$} (a)
|
|
|
|
(b) edge[bend left] node[label] {$2$} (c)
|
|
|
|
(c) edge[bend left] node[label] {$3$} (b)
|
|
|
|
(c) edge[loop right] node[label] {$4$} (c)
|
|
|
|
;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{center}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{scope}[layer = nodes]
|
|
|
|
\node[main] (0) at (0, 0) {$0$};
|
|
|
|
\node[main] (1) at (2, -4) {$1$};
|
|
|
|
\node[main] (2) at (0, -2) {$2$};
|
|
|
|
\node[main] (3) at (2, -2) {$3$};
|
|
|
|
\node[main] (4) at (2, 0) {$4$};
|
|
|
|
\end{scope}
|
|
|
|
|
|
|
|
\draw[->]
|
|
|
|
(0) edge[bend left] (2)
|
|
|
|
(2) edge[bend left] (0)
|
|
|
|
(0) edge (4)
|
|
|
|
(4) edge[bend left] (2)
|
|
|
|
(2) edge (1)
|
|
|
|
(1) edge[bend left] (3)
|
|
|
|
(3) edge[bend left] (1)
|
|
|
|
(3) edge (0)
|
|
|
|
;
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{center}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\definition{}
|
|
|
|
We say a graph $G$ is \textit{connected} if there is a path
|
|
|
|
between any two vertices of $G$.
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that if $G$ is connected, $\mathcal{L}(G)$ is connected.
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
Let $a, b$ and $x, y$ be nodes in a connected graph $G$ so that an edges $a \rightarrow b$ and
|
|
|
|
and $x \rightarrow y$ exist. Since $G$ is connected, we can find a path from $b$ to $x$.
|
|
|
|
The path $a$ to $y$ corresponds to a path in $\mathcal{L}(G)$ between $a \rightarrow b$ and $x \rightarrow y$.
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
|
|
|
|
\definition{}
|
|
|
|
Consider $\mathcal{L}(G_n)$, where $G_n$ is the $n^\text{th}$ order De Bruijn graph. \par
|
|
|
|
|
|
|
|
\vspace{2mm}
|
|
|
|
|
|
|
|
We'll need to label the vertices of $\mathcal{L}(G_n)$. To do this, do the following:
|
|
|
|
\begin{itemize}
|
|
|
|
\item Let $a$ and $b$ be nodes in $G_n$
|
|
|
|
\item Let \texttt{x} be the first letter of $a$
|
|
|
|
\item Let \texttt{y}, the last letter of $b$
|
|
|
|
\item Let $\overline{\texttt{p}}$ be the prefix/suffix that $a$ and $b$ share. \par
|
|
|
|
Note that $a = \texttt{x}\overline{\texttt{p}}$ and $b = \overline{\texttt{p}}\texttt{y}$,
|
|
|
|
\end{itemize}
|
|
|
|
Now, relabel the edge from $a$ to $b$ as $\texttt{x}\overline{\texttt{p}}\texttt{y}$. \par
|
|
|
|
Use these new labels to name nodes in $\mathcal{L}(G_n)$.
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Construct $\mathcal{L}(G_2)$ and $\mathcal{L}(G_3)$. What do you notice?
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
After fixing edge labels, we find that
|
2024-03-21 12:03:37 -07:00
|
|
|
$\mathcal{L}(G_2) \cong G_3$ and $\mathcal{L}(G_3) \cong G_4$
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|