daisy/src/quantity/rationalq.rs

268 lines
5.4 KiB
Rust

use rug::Rational;
use rug::Integer;
use std::ops::{
Add, Sub, Mul, Div,
Neg, Rem,
AddAssign, SubAssign,
MulAssign, DivAssign
};
use std::cmp::Ordering;
use crate::quantity::wrap_rational;
use crate::quantity::Quantity;
use crate::quantity::QuantBase;
use crate::quantity::RationalBase;
macro_rules! float_foward {
( $x:ident ) => {
fn $x(&self) -> Quantity {
Quantity::float_from_rat(&wrap_rational!(self.clone())).$x()
}
}
}
#[derive(Debug)]
#[derive(Clone)]
pub struct RationalQ where {
pub val: Rational
}
/*
fn to_string_radix(&self, radix: i32, num_digits: Option<usize>) -> String {
self.to_float().to_string_radix(radix, num_digits)
}
fn to_sign_string_exp(&self, radix: i32, num_digits: Option<usize>) -> (bool, String, Option<i32>) {
self.to_float().to_sign_string_exp(radix, num_digits)
}
*/
impl ToString for RationalQ{
fn to_string(&self) -> String {
let v = Quantity::float_from_rat(&wrap_rational!(self.clone()));
return v.to_string();
}
}
impl QuantBase for RationalQ {
fn fract(&self) -> Quantity {
wrap_rational!(RationalQ{val: self.val.clone().fract_floor(Integer::new()).0})
}
fn is_zero(&self) -> bool {self.val == Rational::from((0,1))}
fn is_negative(&self) -> bool { self.val.clone().signum() == -1 }
fn is_positive(&self) -> bool { self.val.clone().signum() == 1 }
fn abs(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().abs()})}
fn floor(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().floor()})}
fn ceil(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().ceil()})}
fn round(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().round()})}
float_foward!(sin);
float_foward!(cos);
float_foward!(tan);
float_foward!(asin);
float_foward!(acos);
float_foward!(atan);
float_foward!(sinh);
float_foward!(cosh);
float_foward!(tanh);
float_foward!(asinh);
float_foward!(acosh);
float_foward!(atanh);
float_foward!(exp);
float_foward!(ln);
float_foward!(log10);
float_foward!(log2);
fn log(&self, base: Quantity) -> Quantity {
Quantity::float_from_rat(&wrap_rational!(self.clone())).log10() / base.log10()
}
fn pow(&self, base: Quantity) -> Quantity {
Quantity::float_from_rat(&wrap_rational!(self.clone())).pow(base)
}
}
impl RationalBase for RationalQ {
fn from_frac(top: i64, bot: i64) -> RationalQ {
return RationalQ {
val: Rational::from((top, bot))
}
}
fn from_f64(f: f64) -> Option<RationalQ> {
let v = Rational::from_f64(f);
if v.is_none() { return None }
return Some(RationalQ{ val: v.unwrap() });
}
fn from_string(s: &str) -> Option<RationalQ> {
// Scientific notation
let mut sci = s.split("e");
let num = sci.next().unwrap();
let exp = sci.next();
let exp = if exp.is_some() {
let r = exp.unwrap().parse::<isize>();
match r {
Ok(x) => x,
Err(_) => return None
}
} else {0isize};
// Split integer and decimal parts
let mut dec = num.split(".");
let a = dec.next().unwrap();
let b = dec.next();
let b = if b.is_some() {b.unwrap()} else {""};
// Error conditions
if {
dec.next().is_some() || // We should have at most one `.`
sci.next().is_some() || // We should have at most one `e`
a.len() == 0 // We need something in the numerator
} { return None; }
let s: String;
if exp < 0 {
let exp: usize = (-exp).try_into().unwrap();
s = format!("{a}{b}/1{}", "0".repeat(b.len() + exp));
} else if exp > 0 {
let exp: usize = exp.try_into().unwrap();
s = format!(
"{a}{b}{}/1{}",
"0".repeat(exp),
"0".repeat(b.len())
);
} else { // exp == 0
s = format!("{a}{b}/1{}", "0".repeat(b.len()));
};
// From fraction string
let r = Rational::from_str_radix(&s, 10);
let r = match r {
Ok(x) => x,
Err(_) => return None
};
return Some(RationalQ{val: r});
}
}
impl Add for RationalQ where {
type Output = Self;
fn add(self, other: Self) -> Self::Output {
Self {
val: self.val + other.val
}
}
}
impl AddAssign for RationalQ where {
fn add_assign(&mut self, other: Self) {
self.val += other.val;
}
}
impl Sub for RationalQ {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
Self {
val: self.val - other.val
}
}
}
impl SubAssign for RationalQ where {
fn sub_assign(&mut self, other: Self) {
self.val -= other.val;
}
}
impl Mul for RationalQ {
type Output = Self;
fn mul(self, other: Self) -> Self::Output {
Self {
val: self.val * other.val
}
}
}
impl MulAssign for RationalQ where {
fn mul_assign(&mut self, other: Self) {
self.val *= other.val;
}
}
impl Div for RationalQ {
type Output = Self;
fn div(self, other: Self) -> Self::Output {
Self {
val: self.val / other.val
}
}
}
impl DivAssign for RationalQ where {
fn div_assign(&mut self, other: Self) {
self.val /= other.val;
}
}
impl Neg for RationalQ where {
type Output = Self;
fn neg(self) -> Self::Output {
Self {
val: -self.val
}
}
}
impl Rem<RationalQ> for RationalQ {
type Output = Self;
fn rem(self, modulus: RationalQ) -> Self::Output {
if {
*self.val.denom() != 1 ||
*modulus.val.denom() != 1
} { panic!() }
RationalQ{
val : Rational::from((
self.val.numer() % modulus.val.numer(),
1
))
}
}
}
impl PartialEq for RationalQ {
fn eq(&self, other: &Self) -> bool {
self.val == other.val
}
}
impl PartialOrd for RationalQ {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.val.partial_cmp(&other.val)
}
}