mirror of
https://github.com/rm-dr/daisy
synced 2025-04-04 04:18:02 -07:00
268 lines
5.4 KiB
Rust
268 lines
5.4 KiB
Rust
use rug::Rational;
|
|
use rug::Integer;
|
|
|
|
use std::ops::{
|
|
Add, Sub, Mul, Div,
|
|
Neg, Rem,
|
|
|
|
AddAssign, SubAssign,
|
|
MulAssign, DivAssign
|
|
};
|
|
|
|
use std::cmp::Ordering;
|
|
|
|
use crate::quantity::wrap_rational;
|
|
use crate::quantity::Quantity;
|
|
use crate::quantity::QuantBase;
|
|
use crate::quantity::RationalBase;
|
|
|
|
|
|
macro_rules! float_foward {
|
|
( $x:ident ) => {
|
|
fn $x(&self) -> Quantity {
|
|
Quantity::float_from_rat(&wrap_rational!(self.clone())).$x()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
#[derive(Clone)]
|
|
pub struct RationalQ where {
|
|
pub val: Rational
|
|
}
|
|
|
|
/*
|
|
fn to_string_radix(&self, radix: i32, num_digits: Option<usize>) -> String {
|
|
self.to_float().to_string_radix(radix, num_digits)
|
|
}
|
|
|
|
fn to_sign_string_exp(&self, radix: i32, num_digits: Option<usize>) -> (bool, String, Option<i32>) {
|
|
self.to_float().to_sign_string_exp(radix, num_digits)
|
|
}
|
|
*/
|
|
|
|
impl ToString for RationalQ{
|
|
fn to_string(&self) -> String {
|
|
let v = Quantity::float_from_rat(&wrap_rational!(self.clone()));
|
|
return v.to_string();
|
|
}
|
|
}
|
|
|
|
impl QuantBase for RationalQ {
|
|
|
|
fn fract(&self) -> Quantity {
|
|
wrap_rational!(RationalQ{val: self.val.clone().fract_floor(Integer::new()).0})
|
|
}
|
|
|
|
fn is_zero(&self) -> bool {self.val == Rational::from((0,1))}
|
|
fn is_negative(&self) -> bool { self.val.clone().signum() == -1 }
|
|
fn is_positive(&self) -> bool { self.val.clone().signum() == 1 }
|
|
|
|
fn abs(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().abs()})}
|
|
fn floor(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().floor()})}
|
|
fn ceil(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().ceil()})}
|
|
fn round(&self) -> Quantity {wrap_rational!(RationalQ{val: self.val.clone().round()})}
|
|
|
|
float_foward!(sin);
|
|
float_foward!(cos);
|
|
float_foward!(tan);
|
|
float_foward!(asin);
|
|
float_foward!(acos);
|
|
float_foward!(atan);
|
|
|
|
float_foward!(sinh);
|
|
float_foward!(cosh);
|
|
float_foward!(tanh);
|
|
float_foward!(asinh);
|
|
float_foward!(acosh);
|
|
float_foward!(atanh);
|
|
|
|
float_foward!(exp);
|
|
float_foward!(ln);
|
|
float_foward!(log10);
|
|
float_foward!(log2);
|
|
|
|
fn log(&self, base: Quantity) -> Quantity {
|
|
Quantity::float_from_rat(&wrap_rational!(self.clone())).log10() / base.log10()
|
|
}
|
|
|
|
fn pow(&self, base: Quantity) -> Quantity {
|
|
Quantity::float_from_rat(&wrap_rational!(self.clone())).pow(base)
|
|
}
|
|
|
|
}
|
|
|
|
impl RationalBase for RationalQ {
|
|
fn from_frac(top: i64, bot: i64) -> RationalQ {
|
|
return RationalQ {
|
|
val: Rational::from((top, bot))
|
|
}
|
|
}
|
|
|
|
fn from_f64(f: f64) -> Option<RationalQ> {
|
|
let v = Rational::from_f64(f);
|
|
if v.is_none() { return None }
|
|
return Some(RationalQ{ val: v.unwrap() });
|
|
}
|
|
|
|
fn from_string(s: &str) -> Option<RationalQ> {
|
|
// Scientific notation
|
|
let mut sci = s.split("e");
|
|
let num = sci.next().unwrap();
|
|
let exp = sci.next();
|
|
|
|
let exp = if exp.is_some() {
|
|
let r = exp.unwrap().parse::<isize>();
|
|
match r {
|
|
Ok(x) => x,
|
|
Err(_) => return None
|
|
}
|
|
} else {0isize};
|
|
|
|
// Split integer and decimal parts
|
|
let mut dec = num.split(".");
|
|
let a = dec.next().unwrap();
|
|
let b = dec.next();
|
|
let b = if b.is_some() {b.unwrap()} else {""};
|
|
|
|
// Error conditions
|
|
if {
|
|
dec.next().is_some() || // We should have at most one `.`
|
|
sci.next().is_some() || // We should have at most one `e`
|
|
a.len() == 0 // We need something in the numerator
|
|
} { return None; }
|
|
|
|
let s: String;
|
|
if exp < 0 {
|
|
let exp: usize = (-exp).try_into().unwrap();
|
|
s = format!("{a}{b}/1{}", "0".repeat(b.len() + exp));
|
|
} else if exp > 0 {
|
|
let exp: usize = exp.try_into().unwrap();
|
|
s = format!(
|
|
"{a}{b}{}/1{}",
|
|
"0".repeat(exp),
|
|
"0".repeat(b.len())
|
|
);
|
|
} else { // exp == 0
|
|
s = format!("{a}{b}/1{}", "0".repeat(b.len()));
|
|
};
|
|
|
|
|
|
// From fraction string
|
|
let r = Rational::from_str_radix(&s, 10);
|
|
let r = match r {
|
|
Ok(x) => x,
|
|
Err(_) => return None
|
|
};
|
|
|
|
return Some(RationalQ{val: r});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Add for RationalQ where {
|
|
type Output = Self;
|
|
|
|
fn add(self, other: Self) -> Self::Output {
|
|
Self {
|
|
val: self.val + other.val
|
|
}
|
|
}
|
|
}
|
|
|
|
impl AddAssign for RationalQ where {
|
|
fn add_assign(&mut self, other: Self) {
|
|
self.val += other.val;
|
|
}
|
|
}
|
|
|
|
impl Sub for RationalQ {
|
|
type Output = Self;
|
|
|
|
fn sub(self, other: Self) -> Self::Output {
|
|
Self {
|
|
val: self.val - other.val
|
|
}
|
|
}
|
|
}
|
|
|
|
impl SubAssign for RationalQ where {
|
|
fn sub_assign(&mut self, other: Self) {
|
|
self.val -= other.val;
|
|
}
|
|
}
|
|
|
|
impl Mul for RationalQ {
|
|
type Output = Self;
|
|
|
|
fn mul(self, other: Self) -> Self::Output {
|
|
Self {
|
|
val: self.val * other.val
|
|
}
|
|
}
|
|
}
|
|
|
|
impl MulAssign for RationalQ where {
|
|
fn mul_assign(&mut self, other: Self) {
|
|
self.val *= other.val;
|
|
}
|
|
}
|
|
|
|
impl Div for RationalQ {
|
|
type Output = Self;
|
|
|
|
fn div(self, other: Self) -> Self::Output {
|
|
Self {
|
|
val: self.val / other.val
|
|
}
|
|
}
|
|
}
|
|
|
|
impl DivAssign for RationalQ where {
|
|
fn div_assign(&mut self, other: Self) {
|
|
self.val /= other.val;
|
|
}
|
|
}
|
|
|
|
impl Neg for RationalQ where {
|
|
type Output = Self;
|
|
|
|
fn neg(self) -> Self::Output {
|
|
Self {
|
|
val: -self.val
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Rem<RationalQ> for RationalQ {
|
|
type Output = Self;
|
|
|
|
fn rem(self, modulus: RationalQ) -> Self::Output {
|
|
if {
|
|
*self.val.denom() != 1 ||
|
|
*modulus.val.denom() != 1
|
|
} { panic!() }
|
|
|
|
RationalQ{
|
|
val : Rational::from((
|
|
self.val.numer() % modulus.val.numer(),
|
|
1
|
|
))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PartialEq for RationalQ {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.val == other.val
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for RationalQ {
|
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
self.val.partial_cmp(&other.val)
|
|
}
|
|
} |