daisy/src/quantity/scalar/f64base.rs

211 lines
4.0 KiB
Rust

use std::ops::{
Add, Sub, Mul, Div,
Neg, Rem,
AddAssign, SubAssign,
MulAssign, DivAssign
};
use std::cmp::Ordering;
use super::ScalarBase;
use super::dec_to_sci;
macro_rules! foward {
( $x:ident ) => {
fn $x(&self) -> Option<F64Base> {
Some(F64Base{ val: self.val.clone().$x() })
}
}
}
#[derive(Debug)]
#[derive(Clone)]
pub struct F64Base where {
pub val: f64
}
impl ToString for F64Base {
fn to_string(&self) -> String {
// Remove negative sign from string
let mut s = self.val.to_string();
let neg = s.starts_with("-");
if neg { s = String::from(&s[1..]); }
// Power of ten
let mut p: i64 = {
if let Some(x) = s.find(".") {
x as i64
} else {
s.len() as i64
}
};
p -= 1;
// We no longer need a decimal point in our string.
// also, trim off leading zeros and adjust power.
let mut s: &str = &s.replace(".", "");
s = &s[0..];
s = s.trim_end_matches('0');
while s.starts_with('0') {
s = &s[1..];
p -= 1;
}
return dec_to_sci(neg, s.to_string(), p);
}
}
impl ScalarBase for F64Base {
fn from_string(s: &str) -> Option<F64Base> {
let v = s.parse::<f64>();
let v = match v {
Ok(x) => x,
Err(_) => return None
};
return Some(F64Base{ val: v });
}
foward!(fract);
fn is_zero(&self) -> bool {self.val == 0f64}
fn is_one(&self) -> bool {self.val == 1f64}
fn is_negative(&self) -> bool { self.val.is_sign_negative() }
fn is_positive(&self) -> bool { self.val.is_sign_positive() }
fn is_int(&self) -> bool { self.val.floor() == self.val }
foward!(abs);
foward!(floor);
foward!(ceil);
foward!(round);
foward!(sin);
foward!(cos);
foward!(tan);
fn csc(&self) -> Option<F64Base> { Some(F64Base{ val: 1f64/self.val.sin() }) }
fn sec(&self) -> Option<F64Base> { Some(F64Base{ val: 1f64/self.val.cos() }) }
fn cot(&self) -> Option<F64Base> { Some(F64Base{ val: 1f64/self.val.tan() }) }
foward!(asin);
foward!(acos);
foward!(atan);
foward!(sinh);
foward!(cosh);
foward!(tanh);
fn csch(&self) -> Option<F64Base> { Some(F64Base{ val: 1f64/self.val.sinh() }) }
fn sech(&self) -> Option<F64Base> { Some(F64Base{ val: 1f64/self.val.cosh() }) }
fn coth(&self) -> Option<F64Base> { Some(F64Base{ val: 1f64/self.val.tanh() }) }
foward!(asinh);
foward!(acosh);
foward!(atanh);
foward!(exp);
foward!(ln);
foward!(log10);
foward!(log2);
fn log(&self, base: Self) -> Option<Self> {
Some(F64Base{ val: self.val.clone().log10() } / base.log10().unwrap())
}
fn pow(&self, base: Self) -> Option<Self> {
Some(F64Base{ val: self.val.clone().powf(base.val)})
}
}
impl Add for F64Base where {
type Output = Self;
fn add(self, other: Self) -> Self::Output {
Self { val: self.val + other.val}
}
}
impl AddAssign for F64Base where {
fn add_assign(&mut self, other: Self) {
self.val += other.val;
}
}
impl Sub for F64Base {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
Self {val: self.val - other.val}
}
}
impl SubAssign for F64Base where {
fn sub_assign(&mut self, other: Self) {
self.val -= other.val;
}
}
impl Mul for F64Base {
type Output = Self;
fn mul(self, other: Self) -> Self::Output {
Self {val: self.val * other.val}
}
}
impl MulAssign for F64Base where {
fn mul_assign(&mut self, other: Self) {
self.val *= other.val;
}
}
impl Div for F64Base {
type Output = Self;
fn div(self, other: Self) -> Self::Output {
Self {val: self.val / other.val}
}
}
impl DivAssign for F64Base where {
fn div_assign(&mut self, other: Self) {
self.val /= other.val;
}
}
impl Neg for F64Base where {
type Output = Self;
fn neg(self) -> Self::Output {
Self {val: -self.val}
}
}
impl Rem<F64Base> for F64Base {
type Output = Self;
fn rem(self, modulus: F64Base) -> Self::Output {
if {
(!self.is_int()) ||
(!modulus.is_int())
} { panic!() }
F64Base{val : self.val.round() % modulus.val.round()}
}
}
impl PartialEq for F64Base {
fn eq(&self, other: &Self) -> bool {
self.val == other.val
}
}
impl PartialOrd for F64Base {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.val.partial_cmp(&other.val)
}
}