daisy/src/main.rs

290 lines
6.5 KiB
Rust

pub mod parser;
pub mod command;
pub mod quantity;
pub mod evaluate;
pub mod context;
pub mod errors;
pub mod formattedtext;
use crate::parser::substitute;
use crate::errors::DaisyError;
use crate::formattedtext::FormattedText;
use crate::context::Context;
use crate::parser::LineLocation;
// Run main script for target system
mod entrypoint;
use crate::entrypoint::main_e;
#[cfg(test)]
mod tests;
fn main() -> Result<(), std::io::Error> {
return main_e();
}
#[inline(always)]
pub fn do_string(
context: &mut Context,
s: &String
) -> Result<FormattedText, FormattedText> {
let r: (LineLocation, DaisyError);
if command::is_command(s) {
return Ok(command::do_command(context, s));
} else if s.contains("=") {
let x = do_assignment(context, s);
match x {
Ok(t) => { return Ok(t) },
Err(t) => { r = t }
};
} else {
let x = do_expression(context, s);
match x {
Ok((t, e)) => { context.push_hist(e); return Ok(t) },
Err(t) => { r = t }
};
}
let (l, e) = r;
let mut t = FormattedText::new("".to_string());
if l.zero() {
t.push(&format!(
"\n {}\n\n",
e.text().to_string(),
));
} else {
t.push(&format!(
concat!(
"{}[e]{}[n]\n",
" {}\n\n"
),
" ".repeat(l.pos + 4),
"^".repeat(l.len),
e.text().to_string(),
));
}
return Err(t);
}
// Handle a simple evaluation string.
// Returns a FormattedText with output that should be printed.
#[inline(always)]
fn do_expression(
context: &mut Context,
s: &String
) -> Result<(FormattedText, parser::Expression), (LineLocation, DaisyError)> {
let mut output = FormattedText::new("".to_string());
let g = parser::parse(context, &s)?;
let g_evaluated = evaluate::evaluate(context, &g)?;
// Display parsed string
output.push(&format!(
" [s]=>[n] {}\n\n",
g.display(context)
));
// Display result
output.push(&format!(
" [r]=[n] {}\n\n",
g_evaluated.display_outer(context),
));
return Ok((output, g_evaluated));
}
// Handle a variable or function definition string.
// Returns a FormattedText with output that should be printed.
#[inline(always)]
fn do_assignment(
context: &mut Context,
s: &String
) -> Result<FormattedText, (LineLocation, DaisyError)> {
let mut output = FormattedText::new("".to_string());
let parts = s.split("=").collect::<Vec<&str>>();
if parts.len() != 2 {
return Err((
LineLocation::new_zero(),
DaisyError::Syntax
));
}
// Index of first non-whitespace character in left
// (relative to whole prompt)
let starting_left = parts[0]
.char_indices()
.find(|(_, ch)| !(ch.is_whitespace() && *ch != '\n'))
.map(|(i, _)| i)
.unwrap_or_else(|| parts[0].len());
// Index of first non-whitespace character in right
// (relative to whole prompt)
// +1 accounts for equals sign
let starting_right = parts[0].chars().count() + 1 +
parts[1]
.char_indices()
.find(|(_, ch)| !(ch.is_whitespace() && *ch != '\n'))
.map(|(i, _)| i)
.unwrap_or_else(|| parts[0].len());
let left = substitute(context, &parts[0].trim().to_string());
let right = substitute(context, &parts[1].trim().to_string());
let is_function = left.contains("(");
// The order of methods below is a bit odd.
// This is intentional, since we want to check a definition's
// variable name before even attempting to parse its content.
if is_function {
let mut mode = 0;
let mut name = String::new();
let mut args = String::new();
for c in left.chars() {
match mode {
// Mode 0: reading function name
0 => {
if c == '(' {
mode = 1; continue;
} else { name.push(c); }
},
// Mode 1: reading arguments
1 => {
if c == ')' {
mode = 2; continue;
} else { args.push(c); }
},
// Mode 2: we should be done by now.
// That close paren should've been the last character.
2 => {
return Err((
LineLocation{ pos: starting_left, len: left.chars().count() },
DaisyError::Syntax
));
},
_ => unreachable!()
}
}
let args = args
.split(",").collect::<Vec<&str>>()
.iter().map(|x| x.trim().to_string()).collect::<Vec<String>>();
if name.len() == 0 {
return Err((
LineLocation{ pos: starting_left, len: left.chars().count() },
DaisyError::Syntax
));
};
if !context.valid_function(&name) {
return Err((
LineLocation{ pos: starting_left, len: left.chars().count() },
DaisyError::BadFunction
));
};
if args.iter().find(|x| &x[..] == "").is_some() {
return Err((
LineLocation{ pos: starting_left, len: left.chars().count() },
DaisyError::Syntax
));
};
for a in &args {
if !context.valid_varible(a) {
return Err((
LineLocation{ pos: starting_left, len: left.chars().count() },
DaisyError::BadVariable
));
}
}
// Parse right hand side
let g = parser::parse(context, &right);
let Ok(g) = g else {
let Err((l, e)) = g else { unreachable!() };
return Err((
LineLocation{ pos: l.pos + starting_right, len: l.len},
e
));
};
// Display parsed string
output.push(&format!(
" [s]=>[n] {left} = {}\n\n",
g.display(context)
));
// Evaluate expression with shadow variables
for a in &args { context.add_shadow(a.to_string(), None);}
let g_evaluated = evaluate::evaluate(context, &g);
context.clear_shadow();
let Ok(_g_evaluated) = g_evaluated else {
let Err((l, e)) = g_evaluated else { unreachable!() };
return Err((
LineLocation{ pos: l.pos + starting_right, len: l.len},
e
));
};
// We could push g_evaluated instead, but an un-evaluated string
// makes the 'vars' command prettier.
//
// We still need to evaluate g above, though, to make sure it works.
context.push_function(name, args, g).unwrap();
} else {
if !context.valid_varible(&left) {
return Err((
LineLocation{ pos: starting_left, len: left.chars().count() },
DaisyError::BadVariable
));
}
// Parse right hand side
let g = parser::parse(context, &right);
let Ok(g) = g else {
let Err((l, e)) = g else { unreachable!() };
return Err((
LineLocation{ pos: l.pos + starting_right, len: l.len},
e
));
};
// Display parsed string
output.push(&format!(
" [t]=>[n] {left} = {}\n\n",
g.display(context)
));
// Evaluate expression
let g_evaluated = evaluate::evaluate(context, &g);
let Ok(g_evaluated) = g_evaluated else {
let Err((l, e)) = g_evaluated else { unreachable!() };
return Err((
LineLocation{ pos: l.pos + starting_right, len: l.len},
e
));
};
context.push_variable(left.to_string(), g_evaluated).unwrap();
}
return Ok(output);
}