mirror of
https://github.com/rm-dr/daisy
synced 2025-07-02 08:39:42 -07:00
Reorganized quantity
This commit is contained in:
175
src/quantity/scalar/f64base.rs
Normal file
175
src/quantity/scalar/f64base.rs
Normal file
@ -0,0 +1,175 @@
|
||||
use std::ops::{
|
||||
Add, Sub, Mul, Div,
|
||||
Neg, Rem,
|
||||
|
||||
AddAssign, SubAssign,
|
||||
MulAssign, DivAssign
|
||||
};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use super::ScalarBase;
|
||||
|
||||
|
||||
macro_rules! foward {
|
||||
( $x:ident ) => {
|
||||
fn $x(&self) -> Option<F64Base> {
|
||||
Some(F64Base{ val: self.val.clone().$x() })
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone)]
|
||||
pub struct F64Base where {
|
||||
pub val: f64
|
||||
}
|
||||
|
||||
impl ToString for F64Base {
|
||||
fn to_string(&self) -> String { self.val.to_string() }
|
||||
}
|
||||
|
||||
|
||||
impl ScalarBase for F64Base {
|
||||
|
||||
fn from_f64(f: f64) -> Option<F64Base> {
|
||||
return Some(F64Base{ val: f });
|
||||
}
|
||||
|
||||
fn from_string(s: &str) -> Option<F64Base> {
|
||||
let v = s.parse::<f64>();
|
||||
let v = match v {
|
||||
Ok(x) => x,
|
||||
Err(_) => return None
|
||||
};
|
||||
|
||||
return Some(F64Base{ val: v });
|
||||
}
|
||||
|
||||
foward!(fract);
|
||||
|
||||
fn is_zero(&self) -> bool {self.val == 0f64}
|
||||
fn is_negative(&self) -> bool { self.val.is_sign_negative() }
|
||||
fn is_positive(&self) -> bool { self.val.is_sign_positive() }
|
||||
|
||||
foward!(abs);
|
||||
foward!(floor);
|
||||
foward!(ceil);
|
||||
foward!(round);
|
||||
|
||||
foward!(sin);
|
||||
foward!(cos);
|
||||
foward!(tan);
|
||||
foward!(asin);
|
||||
foward!(acos);
|
||||
foward!(atan);
|
||||
|
||||
foward!(sinh);
|
||||
foward!(cosh);
|
||||
foward!(tanh);
|
||||
foward!(asinh);
|
||||
foward!(acosh);
|
||||
foward!(atanh);
|
||||
|
||||
foward!(exp);
|
||||
foward!(ln);
|
||||
foward!(log10);
|
||||
foward!(log2);
|
||||
|
||||
fn log(&self, base: Self) -> Option<Self> {
|
||||
Some(F64Base{ val: self.val.clone().log10() } / base.log10().unwrap())
|
||||
}
|
||||
|
||||
fn pow(&self, base: Self) -> Option<Self> {
|
||||
Some(F64Base{ val: self.val.clone().powf(base.val)})
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
impl Add for F64Base where {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, other: Self) -> Self::Output {
|
||||
Self { val: self.val + other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for F64Base where {
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
self.val += other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for F64Base {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, other: Self) -> Self::Output {
|
||||
Self {val: self.val - other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for F64Base where {
|
||||
fn sub_assign(&mut self, other: Self) {
|
||||
self.val -= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for F64Base {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, other: Self) -> Self::Output {
|
||||
Self {val: self.val * other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for F64Base where {
|
||||
fn mul_assign(&mut self, other: Self) {
|
||||
self.val *= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Div for F64Base {
|
||||
type Output = Self;
|
||||
|
||||
fn div(self, other: Self) -> Self::Output {
|
||||
Self {val: self.val / other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign for F64Base where {
|
||||
fn div_assign(&mut self, other: Self) {
|
||||
self.val /= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for F64Base where {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
Self {val: -self.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl Rem<F64Base> for F64Base {
|
||||
type Output = Self;
|
||||
|
||||
fn rem(self, modulus: F64Base) -> Self::Output {
|
||||
if {
|
||||
(!self.fract().unwrap().is_zero()) ||
|
||||
(!modulus.fract().unwrap().is_zero())
|
||||
} { panic!() }
|
||||
|
||||
F64Base{val : self.val.fract() % modulus.val.fract()}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for F64Base {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.val == other.val
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for F64Base {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
self.val.partial_cmp(&other.val)
|
||||
}
|
||||
}
|
251
src/quantity/scalar/floatbase.rs
Normal file
251
src/quantity/scalar/floatbase.rs
Normal file
@ -0,0 +1,251 @@
|
||||
use rug::Float;
|
||||
use rug::Assign;
|
||||
use rug::ops::AssignRound;
|
||||
use rug::ops::Pow;
|
||||
|
||||
use std::ops::{
|
||||
Add, Sub, Mul, Div,
|
||||
Neg, Rem,
|
||||
|
||||
AddAssign, SubAssign,
|
||||
MulAssign, DivAssign
|
||||
};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use super::ScalarBase;
|
||||
use super::PRINT_LEN;
|
||||
use super::FLOAT_PRECISION;
|
||||
|
||||
|
||||
macro_rules! foward {
|
||||
( $x:ident ) => {
|
||||
fn $x(&self) -> Option<FloatBase> {
|
||||
Some(FloatBase{ val: self.val.clone().$x()})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone)]
|
||||
pub struct FloatBase where {
|
||||
pub val: Float
|
||||
}
|
||||
|
||||
impl FloatBase {
|
||||
pub fn from<T>(a: T) -> Option<FloatBase> where
|
||||
Float: Assign<T> + AssignRound<T>
|
||||
{
|
||||
let v = Float::with_val(FLOAT_PRECISION, a);
|
||||
return Some(FloatBase{ val: v });
|
||||
}
|
||||
}
|
||||
|
||||
impl ToString for FloatBase {
|
||||
fn to_string(&self) -> String {
|
||||
let (sign, mut string, exp) = self.val.to_sign_string_exp(10, Some(PRINT_LEN));
|
||||
|
||||
// zero, nan, or inf.
|
||||
let sign = if sign {"-"} else {""};
|
||||
if exp.is_none() { return format!("{sign}{string}"); }
|
||||
let exp = exp.unwrap();
|
||||
|
||||
// Remove trailing zeros.
|
||||
// At this point, string is guaranteed to be nonzero.
|
||||
while string.chars().last().unwrap() == '0' {
|
||||
string.remove(string.len() - 1);
|
||||
}
|
||||
|
||||
let exp_u: usize;
|
||||
|
||||
if exp < 0 {
|
||||
exp_u = (-exp).try_into().unwrap()
|
||||
} else {
|
||||
exp_u = exp.try_into().unwrap()
|
||||
}
|
||||
|
||||
if exp_u >= PRINT_LEN {
|
||||
// Exponential notation
|
||||
let pre = &string[0..1];
|
||||
let post = &string[1..];
|
||||
|
||||
format!(
|
||||
"{pre}{}{post}e{}",
|
||||
if post.len() != 0 {"."} else {""},
|
||||
//if exp > 0 {"+"} else {""},
|
||||
exp - 1
|
||||
)
|
||||
} else {
|
||||
if exp <= 0 { // Decimal, needs `0.` and leading zeros
|
||||
format!(
|
||||
"{sign}0.{}{string}",
|
||||
"0".repeat(exp_u)
|
||||
)
|
||||
} else if exp_u < string.len() { // Decimal, needs only `.`
|
||||
format!(
|
||||
"{sign}{}.{}",
|
||||
&string[0..exp_u],
|
||||
&string[exp_u..]
|
||||
)
|
||||
} else { // Integer, needs trailing zeros
|
||||
format!(
|
||||
"{sign}{string}{}",
|
||||
"0".repeat(exp_u - string.len())
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl ScalarBase for FloatBase {
|
||||
|
||||
fn from_f64(f: f64) -> Option<FloatBase> {
|
||||
let v = Float::with_val(FLOAT_PRECISION, f);
|
||||
return Some(FloatBase{ val: v });
|
||||
}
|
||||
|
||||
fn from_string(s: &str) -> Option<FloatBase> {
|
||||
let v = Float::parse(s);
|
||||
let v = match v {
|
||||
Ok(x) => x,
|
||||
Err(_) => return None
|
||||
};
|
||||
|
||||
return Some(
|
||||
FloatBase{ val:
|
||||
Float::with_val(FLOAT_PRECISION, v)
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
foward!(fract);
|
||||
|
||||
fn is_zero(&self) -> bool {self.val.is_zero()}
|
||||
fn is_negative(&self) -> bool { self.val.is_sign_negative() }
|
||||
fn is_positive(&self) -> bool { self.val.is_sign_positive() }
|
||||
|
||||
foward!(abs);
|
||||
foward!(floor);
|
||||
foward!(ceil);
|
||||
foward!(round);
|
||||
|
||||
foward!(sin);
|
||||
foward!(cos);
|
||||
foward!(tan);
|
||||
foward!(asin);
|
||||
foward!(acos);
|
||||
foward!(atan);
|
||||
|
||||
foward!(sinh);
|
||||
foward!(cosh);
|
||||
foward!(tanh);
|
||||
foward!(asinh);
|
||||
foward!(acosh);
|
||||
foward!(atanh);
|
||||
|
||||
foward!(exp);
|
||||
foward!(ln);
|
||||
foward!(log10);
|
||||
foward!(log2);
|
||||
|
||||
fn log(&self, base: FloatBase) -> Option<FloatBase> {
|
||||
Some(FloatBase{ val: self.val.clone().log10() } / base.log10().unwrap())
|
||||
}
|
||||
|
||||
fn pow(&self, base: FloatBase) -> Option<FloatBase> {
|
||||
Some(FloatBase{ val: self.val.clone().pow(base.val)})
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
impl Add for FloatBase where {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, other: Self) -> Self::Output {
|
||||
Self { val: self.val + other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for FloatBase where {
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
self.val += other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for FloatBase {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, other: Self) -> Self::Output {
|
||||
Self {val: self.val - other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for FloatBase where {
|
||||
fn sub_assign(&mut self, other: Self) {
|
||||
self.val -= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for FloatBase {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, other: Self) -> Self::Output {
|
||||
Self {val: self.val * other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for FloatBase where {
|
||||
fn mul_assign(&mut self, other: Self) {
|
||||
self.val *= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Div for FloatBase {
|
||||
type Output = Self;
|
||||
|
||||
fn div(self, other: Self) -> Self::Output {
|
||||
Self {val: self.val / other.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign for FloatBase where {
|
||||
fn div_assign(&mut self, other: Self) {
|
||||
self.val /= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for FloatBase where {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
Self {val: -self.val}
|
||||
}
|
||||
}
|
||||
|
||||
impl Rem<FloatBase> for FloatBase {
|
||||
type Output = Self;
|
||||
|
||||
fn rem(self, modulus: FloatBase) -> Self::Output {
|
||||
if {
|
||||
(!self.fract().unwrap().is_zero()) ||
|
||||
(!modulus.fract().unwrap().is_zero())
|
||||
} { panic!() }
|
||||
|
||||
FloatBase{val : self.val.fract() % modulus.val.fract()}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for FloatBase {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.val == other.val
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for FloatBase {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
self.val.partial_cmp(&other.val)
|
||||
}
|
||||
}
|
382
src/quantity/scalar/mod.rs
Normal file
382
src/quantity/scalar/mod.rs
Normal file
@ -0,0 +1,382 @@
|
||||
use std::ops::{
|
||||
Add, Sub, Mul, Div,
|
||||
Neg, Rem,
|
||||
|
||||
AddAssign, SubAssign,
|
||||
MulAssign, DivAssign
|
||||
};
|
||||
use std::cmp::Ordering;
|
||||
|
||||
|
||||
pub trait ScalarBase:
|
||||
Sized + ToString +
|
||||
Add + AddAssign +
|
||||
Sub + SubAssign +
|
||||
Mul + MulAssign +
|
||||
Div + DivAssign +
|
||||
Neg + Rem +
|
||||
PartialEq + PartialOrd
|
||||
{
|
||||
// Creation
|
||||
fn from_f64(f: f64) -> Option<Self>;
|
||||
fn from_string(s: &str) -> Option<Self>;
|
||||
|
||||
// Utility
|
||||
fn fract(&self) -> Option<Self>;
|
||||
fn is_zero(&self) -> bool;
|
||||
fn is_negative(&self) -> bool;
|
||||
fn is_positive(&self) -> bool;
|
||||
|
||||
// Mathematical
|
||||
fn exp(&self) -> Option<Self>;
|
||||
fn abs(&self) -> Option<Self>;
|
||||
fn floor(&self) -> Option<Self>;
|
||||
fn ceil(&self) -> Option<Self>;
|
||||
fn round(&self) -> Option<Self>;
|
||||
fn sin(&self) -> Option<Self>;
|
||||
fn cos(&self) -> Option<Self>;
|
||||
fn tan(&self) -> Option<Self>;
|
||||
fn asin(&self) -> Option<Self>;
|
||||
fn acos(&self) -> Option<Self>;
|
||||
fn atan(&self) -> Option<Self>;
|
||||
fn sinh(&self) -> Option<Self>;
|
||||
fn cosh(&self) -> Option<Self>;
|
||||
fn tanh(&self) -> Option<Self>;
|
||||
fn asinh(&self) -> Option<Self>;
|
||||
fn acosh(&self) -> Option<Self>;
|
||||
fn atanh(&self) -> Option<Self>;
|
||||
fn ln(&self) -> Option<Self>;
|
||||
fn log10(&self) -> Option<Self>;
|
||||
fn log2(&self) -> Option<Self>;
|
||||
fn log(&self, base: Self) -> Option<Self>;
|
||||
fn pow(&self, exp: Self) -> Option<Self>;
|
||||
}
|
||||
|
||||
|
||||
const FLOAT_PRECISION: u32 = 1024;
|
||||
const PRINT_LEN: usize = 5; // How many significant digits we will show in output
|
||||
|
||||
mod rationalbase;
|
||||
mod floatbase;
|
||||
//mod f64base;
|
||||
use self::rationalbase::RationalBase;
|
||||
use self::floatbase::FloatBase as FloatBase;
|
||||
|
||||
|
||||
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone)]
|
||||
pub enum Scalar {
|
||||
Rational{ v: RationalBase },
|
||||
Float{ v: FloatBase }
|
||||
}
|
||||
|
||||
|
||||
macro_rules! wrap_rational {
|
||||
( $x:expr) => { Scalar::Rational{v: $x} }
|
||||
}
|
||||
|
||||
macro_rules! wrap_float {
|
||||
( $x:expr) => { Scalar::Float{v: $x} }
|
||||
}
|
||||
|
||||
|
||||
fn to_float(r: Scalar) -> Scalar {
|
||||
match &r {
|
||||
Scalar::Float {..} => r,
|
||||
Scalar::Rational {v} => wrap_float!(
|
||||
FloatBase::from(v.val.numer()).unwrap() /
|
||||
FloatBase::from(v.val.denom()).unwrap()
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl ToString for Scalar {
|
||||
fn to_string(&self) -> String {
|
||||
match self {
|
||||
Scalar::Rational{..} => to_float(self.clone()).to_string(),
|
||||
Scalar::Float{v} => v.to_string()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Creation methods
|
||||
impl Scalar {
|
||||
pub fn new_float(f: f64) -> Option<Self> {
|
||||
let v = FloatBase::from_f64(f);
|
||||
if v.is_none() { return None; }
|
||||
return Some(wrap_float!(v.unwrap()));
|
||||
}
|
||||
|
||||
pub fn new_rational(f: f64) -> Option<Self> {
|
||||
let r = RationalBase::from_f64(f);
|
||||
if r.is_none() { return None; }
|
||||
return Some(wrap_rational!(r.unwrap()));
|
||||
}
|
||||
|
||||
pub fn new_rational_from_string(s: &str) -> Option<Self> {
|
||||
let r = RationalBase::from_string(s);
|
||||
if r.is_none() { return None; }
|
||||
return Some(wrap_rational!(r.unwrap()));
|
||||
}
|
||||
|
||||
pub fn new_float_from_string(s: &str) -> Option<Self> {
|
||||
let v = FloatBase::from_string(s);
|
||||
if v.is_none() { return None; }
|
||||
return Some(wrap_float!(v.unwrap()))
|
||||
}
|
||||
}
|
||||
|
||||
impl Scalar {
|
||||
pub fn is_nan(&self) -> bool {
|
||||
match self {
|
||||
Scalar::Float {v} => {v.val.is_nan()},
|
||||
Scalar::Rational {..} => {panic!()}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Forwarded functions
|
||||
macro_rules! scalar_foward {
|
||||
( $x:ident ) => {
|
||||
pub fn $x(&self) -> Scalar {
|
||||
match self {
|
||||
Scalar::Rational{v} => {
|
||||
let r = v.$x();
|
||||
if r.is_none() {
|
||||
let v = to_float(self.clone());
|
||||
return v.$x();
|
||||
} else {wrap_rational!(r.unwrap())}
|
||||
},
|
||||
Scalar::Float{v} => {wrap_float!(v.$x().unwrap())},
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Scalar {
|
||||
pub fn is_zero(&self) -> bool {
|
||||
match self {
|
||||
Scalar::Rational{v} => v.is_zero(),
|
||||
Scalar::Float{v} => v.is_zero(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_negative(&self) -> bool {
|
||||
match self {
|
||||
Scalar::Rational{v} => v.is_negative(),
|
||||
Scalar::Float{v} => v.is_negative(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_positive(&self) -> bool {
|
||||
match self {
|
||||
Scalar::Rational{v} => v.is_positive(),
|
||||
Scalar::Float{v} => v.is_positive(),
|
||||
}
|
||||
}
|
||||
|
||||
scalar_foward!(fract);
|
||||
scalar_foward!(abs);
|
||||
scalar_foward!(floor);
|
||||
scalar_foward!(ceil);
|
||||
scalar_foward!(round);
|
||||
scalar_foward!(sin);
|
||||
scalar_foward!(cos);
|
||||
scalar_foward!(tan);
|
||||
scalar_foward!(asin);
|
||||
scalar_foward!(acos);
|
||||
scalar_foward!(atan);
|
||||
scalar_foward!(sinh);
|
||||
scalar_foward!(cosh);
|
||||
scalar_foward!(tanh);
|
||||
scalar_foward!(asinh);
|
||||
scalar_foward!(acosh);
|
||||
scalar_foward!(atanh);
|
||||
scalar_foward!(exp);
|
||||
scalar_foward!(ln);
|
||||
scalar_foward!(log10);
|
||||
scalar_foward!(log2);
|
||||
|
||||
pub fn log(&self, base: Scalar) -> Scalar {
|
||||
match self {
|
||||
Scalar::Rational{..} => { to_float(self.clone()).log(to_float(base)) },
|
||||
Scalar::Float{..} => { to_float(self.clone()).log(to_float(base)) },
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pow(&self, base: Scalar) -> Scalar {
|
||||
match self {
|
||||
Scalar::Rational{..} => {
|
||||
let a = match to_float(self.clone()) {
|
||||
Scalar::Rational{..} => panic!(),
|
||||
Scalar::Float{v} => v,
|
||||
};
|
||||
|
||||
let b = match to_float(base) {
|
||||
Scalar::Rational{..} => panic!(),
|
||||
Scalar::Float{v} => v,
|
||||
};
|
||||
|
||||
wrap_float!(a.pow(b).unwrap())
|
||||
},
|
||||
Scalar::Float{..} => {
|
||||
let a = match to_float(self.clone()) {
|
||||
Scalar::Rational{..} => panic!(),
|
||||
Scalar::Float{v} => v,
|
||||
};
|
||||
|
||||
let b = match to_float(base) {
|
||||
Scalar::Rational{..} => panic!(),
|
||||
Scalar::Float{v} => v,
|
||||
};
|
||||
|
||||
wrap_float!(a.pow(b).unwrap())
|
||||
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for Scalar where {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
match self {
|
||||
Scalar::Float { v } => {wrap_float!(-v)},
|
||||
Scalar::Rational { v } => {wrap_rational!(-v)},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Scalar {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, other: Self) -> Self::Output {
|
||||
match (&self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {wrap_float!(va.clone()+vb.clone())},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {self + to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {to_float(self) + other},
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {wrap_rational!(va.clone()+vb.clone())},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for Scalar where {
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
match (&mut *self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {*va += vb.clone()},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {*self += to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {*self = to_float(self.clone()) + other },
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {*va += vb.clone()},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for Scalar {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, other: Self) -> Self::Output {
|
||||
match (&self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {wrap_float!(va.clone()-vb.clone())},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {self - to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {to_float(self) - other},
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {wrap_rational!(va.clone()-vb.clone())},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for Scalar where {
|
||||
fn sub_assign(&mut self, other: Self) {
|
||||
match (&mut *self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {*va -= vb.clone()},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {*self -= to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {*self = to_float(self.clone()) - other },
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {*va -= vb.clone()},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for Scalar {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, other: Self) -> Self::Output {
|
||||
match (&self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {wrap_float!(va.clone()*vb.clone())},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {self * to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {to_float(self) * other},
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {wrap_rational!(va.clone()*vb.clone())},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for Scalar where {
|
||||
fn mul_assign(&mut self, other: Self) {
|
||||
match (&mut *self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {*va *= vb.clone()},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {*self *= to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {*self = to_float(self.clone()) * other },
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {*va *= vb.clone()},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Div for Scalar {
|
||||
type Output = Self;
|
||||
|
||||
fn div(self, other: Self) -> Self::Output {
|
||||
match (&self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {wrap_float!(va.clone()/vb.clone())},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {self / to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {to_float(self) / other},
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {wrap_rational!(va.clone()/vb.clone())},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign for Scalar where {
|
||||
fn div_assign(&mut self, other: Self) {
|
||||
match (&mut *self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {*va /= vb.clone()},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {*self /= to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {*self = to_float(self.clone()) / other },
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {*va /= vb.clone()},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Rem<Scalar> for Scalar {
|
||||
type Output = Self;
|
||||
|
||||
fn rem(self, other: Scalar) -> Self::Output {
|
||||
match (&self, &other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {wrap_float!(va.clone()%vb.clone())},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {self % to_float(other)},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {to_float(self) % other},
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {wrap_rational!(va.clone()%vb.clone())},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Scalar {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
match (self, other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => { va == vb },
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {*self == to_float(other.clone())},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {to_float(self.clone()) == *other},
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => { va == vb },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Scalar {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
match (self, other) {
|
||||
(Scalar::Float{v:va}, Scalar::Float{v:vb}) => {va.partial_cmp(vb)},
|
||||
(Scalar::Float{..}, Scalar::Rational{..}) => {(*self).partial_cmp(&to_float(other.clone()))},
|
||||
(Scalar::Rational{..}, Scalar::Float{..}) => {to_float(self.clone()).partial_cmp(other)},
|
||||
(Scalar::Rational{v:va}, Scalar::Rational{v:vb}) => {va.partial_cmp(vb)},
|
||||
}
|
||||
}
|
||||
}
|
248
src/quantity/scalar/rationalbase.rs
Normal file
248
src/quantity/scalar/rationalbase.rs
Normal file
@ -0,0 +1,248 @@
|
||||
use rug::Rational;
|
||||
use rug::Integer;
|
||||
|
||||
use std::ops::{
|
||||
Add, Sub, Mul, Div,
|
||||
Neg, Rem,
|
||||
|
||||
AddAssign, SubAssign,
|
||||
MulAssign, DivAssign
|
||||
};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use super::ScalarBase;
|
||||
|
||||
|
||||
macro_rules! cant_do {
|
||||
( $x:ident ) => {
|
||||
fn $x(&self) -> Option<RationalBase> { None }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone)]
|
||||
pub struct RationalBase where {
|
||||
pub val: Rational
|
||||
}
|
||||
|
||||
/*
|
||||
fn to_string_radix(&self, radix: i32, num_digits: Option<usize>) -> String {
|
||||
self.to_float().to_string_radix(radix, num_digits)
|
||||
}
|
||||
|
||||
fn to_sign_string_exp(&self, radix: i32, num_digits: Option<usize>) -> (bool, String, Option<i32>) {
|
||||
self.to_float().to_sign_string_exp(radix, num_digits)
|
||||
}
|
||||
*/
|
||||
|
||||
impl ToString for RationalBase{
|
||||
fn to_string(&self) -> String {
|
||||
return self.val.to_string();
|
||||
}
|
||||
}
|
||||
|
||||
impl ScalarBase for RationalBase {
|
||||
|
||||
|
||||
fn from_f64(f: f64) -> Option<RationalBase> {
|
||||
let v = Rational::from_f64(f);
|
||||
if v.is_none() { return None }
|
||||
return Some(RationalBase{ val: v.unwrap() });
|
||||
}
|
||||
|
||||
fn from_string(s: &str) -> Option<RationalBase> {
|
||||
// Scientific notation
|
||||
let mut sci = s.split("e");
|
||||
let num = sci.next().unwrap();
|
||||
let exp = sci.next();
|
||||
|
||||
let exp = if exp.is_some() {
|
||||
let r = exp.unwrap().parse::<isize>();
|
||||
match r {
|
||||
Ok(x) => x,
|
||||
Err(_) => return None
|
||||
}
|
||||
} else {0isize};
|
||||
|
||||
// Split integer and decimal parts
|
||||
let mut dec = num.split(".");
|
||||
let a = dec.next().unwrap();
|
||||
let b = dec.next();
|
||||
let b = if b.is_some() {b.unwrap()} else {""};
|
||||
|
||||
// Error conditions
|
||||
if {
|
||||
dec.next().is_some() || // We should have at most one `.`
|
||||
sci.next().is_some() || // We should have at most one `e`
|
||||
a.len() == 0 // We need something in the numerator
|
||||
} { return None; }
|
||||
|
||||
let s: String;
|
||||
if exp < 0 {
|
||||
let exp: usize = (-exp).try_into().unwrap();
|
||||
s = format!("{a}{b}/1{}", "0".repeat(b.len() + exp));
|
||||
} else if exp > 0 {
|
||||
let exp: usize = exp.try_into().unwrap();
|
||||
s = format!(
|
||||
"{a}{b}{}/1{}",
|
||||
"0".repeat(exp),
|
||||
"0".repeat(b.len())
|
||||
);
|
||||
} else { // exp == 0
|
||||
s = format!("{a}{b}/1{}", "0".repeat(b.len()));
|
||||
};
|
||||
|
||||
|
||||
// From fraction string
|
||||
let r = Rational::from_str_radix(&s, 10);
|
||||
let r = match r {
|
||||
Ok(x) => x,
|
||||
Err(_) => return None
|
||||
};
|
||||
|
||||
return Some(RationalBase{val: r});
|
||||
|
||||
}
|
||||
|
||||
|
||||
fn fract(&self) -> Option<RationalBase> {
|
||||
Some(RationalBase{val: self.val.clone().fract_floor(Integer::new()).0})
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {self.val == Rational::from((0,1))}
|
||||
fn is_negative(&self) -> bool { self.val.clone().signum() == -1 }
|
||||
fn is_positive(&self) -> bool { self.val.clone().signum() == 1 }
|
||||
|
||||
fn abs(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().abs()})}
|
||||
fn floor(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().floor()})}
|
||||
fn ceil(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().ceil()})}
|
||||
fn round(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().round()})}
|
||||
|
||||
cant_do!(sin);
|
||||
cant_do!(cos);
|
||||
cant_do!(tan);
|
||||
cant_do!(asin);
|
||||
cant_do!(acos);
|
||||
cant_do!(atan);
|
||||
|
||||
cant_do!(sinh);
|
||||
cant_do!(cosh);
|
||||
cant_do!(tanh);
|
||||
cant_do!(asinh);
|
||||
cant_do!(acosh);
|
||||
cant_do!(atanh);
|
||||
|
||||
cant_do!(exp);
|
||||
cant_do!(ln);
|
||||
cant_do!(log10);
|
||||
cant_do!(log2);
|
||||
|
||||
fn log(&self, _base: RationalBase) -> Option<RationalBase> { None }
|
||||
fn pow(&self, _base: RationalBase) -> Option<RationalBase> { None }
|
||||
|
||||
}
|
||||
|
||||
|
||||
impl Add for RationalBase where {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val + other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for RationalBase where {
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
self.val += other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for RationalBase {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val - other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for RationalBase where {
|
||||
fn sub_assign(&mut self, other: Self) {
|
||||
self.val -= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for RationalBase {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val * other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for RationalBase where {
|
||||
fn mul_assign(&mut self, other: Self) {
|
||||
self.val *= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Div for RationalBase {
|
||||
type Output = Self;
|
||||
|
||||
fn div(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val / other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign for RationalBase where {
|
||||
fn div_assign(&mut self, other: Self) {
|
||||
self.val /= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for RationalBase where {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
Self {
|
||||
val: -self.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Rem<RationalBase> for RationalBase {
|
||||
type Output = Self;
|
||||
|
||||
fn rem(self, modulus: RationalBase) -> Self::Output {
|
||||
if {
|
||||
*self.val.denom() != 1 ||
|
||||
*modulus.val.denom() != 1
|
||||
} { panic!() }
|
||||
|
||||
RationalBase{
|
||||
val : Rational::from((
|
||||
self.val.numer() % modulus.val.numer(),
|
||||
1
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for RationalBase {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.val == other.val
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for RationalBase {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
self.val.partial_cmp(&other.val)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user