mirror of https://github.com/rm-dr/daisy
Reorganized quantities
parent
4dba794712
commit
e4667eb998
|
@ -81,7 +81,7 @@ impl PreToken {
|
||||||
s.insert(0, '0');
|
s.insert(0, '0');
|
||||||
}
|
}
|
||||||
|
|
||||||
let r = Quantity::new_rational_from_float_string(&s);
|
let r = Quantity::new_rational_from_string(&s);
|
||||||
if r.is_none() {
|
if r.is_none() {
|
||||||
return Err((l, ParserError::BadNumber))
|
return Err((l, ParserError::BadNumber))
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,263 @@
|
||||||
|
use rug::Float;
|
||||||
|
use rug::Assign;
|
||||||
|
use rug::ops::AssignRound;
|
||||||
|
use rug::ops::Pow;
|
||||||
|
|
||||||
|
use std::ops::{
|
||||||
|
Add, Sub, Mul, Div,
|
||||||
|
Neg, Rem,
|
||||||
|
|
||||||
|
AddAssign, SubAssign,
|
||||||
|
MulAssign, DivAssign
|
||||||
|
};
|
||||||
|
|
||||||
|
use std::cmp::Ordering;
|
||||||
|
|
||||||
|
|
||||||
|
use crate::quantity::Quantity;
|
||||||
|
use crate::quantity::QuantBase;
|
||||||
|
use crate::quantity::FloatBase;
|
||||||
|
use crate::quantity::PRINT_LEN;
|
||||||
|
|
||||||
|
use super::FLOAT_PRECISION;
|
||||||
|
|
||||||
|
|
||||||
|
macro_rules! foward {
|
||||||
|
( $x:ident ) => {
|
||||||
|
fn $x(&self) -> Quantity {
|
||||||
|
Quantity::Float{v: FloatQ{ val: self.val.clone().$x() }}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct FloatQ where {
|
||||||
|
pub val: Float
|
||||||
|
}
|
||||||
|
|
||||||
|
impl FloatQ {
|
||||||
|
pub fn from<T>(a: T) -> Option<FloatQ> where
|
||||||
|
Float: Assign<T> + AssignRound<T>
|
||||||
|
{
|
||||||
|
let v = Float::with_val(FLOAT_PRECISION, a);
|
||||||
|
return Some(FloatQ{ val: v });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ToString for FloatQ {
|
||||||
|
fn to_string(&self) -> String {
|
||||||
|
let (sign, mut string, exp) = self.val.to_sign_string_exp(10, Some(PRINT_LEN));
|
||||||
|
|
||||||
|
// zero, nan, or inf.
|
||||||
|
let sign = if sign {"-"} else {""};
|
||||||
|
if exp.is_none() { return format!("{sign}{string}"); }
|
||||||
|
let exp = exp.unwrap();
|
||||||
|
|
||||||
|
// Remove trailing zeros.
|
||||||
|
// At this point, string is guaranteed to be nonzero.
|
||||||
|
while string.chars().last().unwrap() == '0' {
|
||||||
|
string.remove(string.len() - 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
let exp_u: usize;
|
||||||
|
|
||||||
|
if exp < 0 {
|
||||||
|
exp_u = (-exp).try_into().unwrap()
|
||||||
|
} else {
|
||||||
|
exp_u = exp.try_into().unwrap()
|
||||||
|
}
|
||||||
|
|
||||||
|
if exp_u >= PRINT_LEN {
|
||||||
|
// Exponential notation
|
||||||
|
let pre = &string[0..1];
|
||||||
|
let post = &string[1..];
|
||||||
|
|
||||||
|
format!(
|
||||||
|
"{pre}{}{post}e{}",
|
||||||
|
if post.len() != 0 {"."} else {""},
|
||||||
|
//if exp > 0 {"+"} else {""},
|
||||||
|
exp - 1
|
||||||
|
)
|
||||||
|
} else {
|
||||||
|
if exp <= 0 { // Decimal, needs `0.` and leading zeros
|
||||||
|
format!(
|
||||||
|
"{sign}0.{}{string}",
|
||||||
|
"0".repeat(exp_u)
|
||||||
|
)
|
||||||
|
} else if exp_u < string.len() { // Decimal, needs only `.`
|
||||||
|
format!(
|
||||||
|
"{sign}{}.{}",
|
||||||
|
&string[0..exp_u],
|
||||||
|
&string[exp_u..]
|
||||||
|
)
|
||||||
|
} else { // Integer, needs trailing zeros
|
||||||
|
format!(
|
||||||
|
"{sign}{string}{}",
|
||||||
|
"0".repeat(exp_u - string.len())
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
impl QuantBase for FloatQ {
|
||||||
|
|
||||||
|
foward!(fract);
|
||||||
|
|
||||||
|
fn is_zero(&self) -> bool {self.val.is_zero()}
|
||||||
|
fn is_negative(&self) -> bool { self.val.is_sign_negative() }
|
||||||
|
fn is_positive(&self) -> bool { self.val.is_sign_positive() }
|
||||||
|
|
||||||
|
foward!(abs);
|
||||||
|
foward!(floor);
|
||||||
|
foward!(ceil);
|
||||||
|
foward!(round);
|
||||||
|
|
||||||
|
foward!(sin);
|
||||||
|
foward!(cos);
|
||||||
|
foward!(tan);
|
||||||
|
foward!(asin);
|
||||||
|
foward!(acos);
|
||||||
|
foward!(atan);
|
||||||
|
|
||||||
|
foward!(sinh);
|
||||||
|
foward!(cosh);
|
||||||
|
foward!(tanh);
|
||||||
|
foward!(asinh);
|
||||||
|
foward!(acosh);
|
||||||
|
foward!(atanh);
|
||||||
|
|
||||||
|
foward!(exp);
|
||||||
|
foward!(ln);
|
||||||
|
foward!(log10);
|
||||||
|
foward!(log2);
|
||||||
|
|
||||||
|
fn log(&self, base: Quantity) -> Quantity {
|
||||||
|
Quantity::Float{v: FloatQ{ val: self.val.clone().log10() }} /
|
||||||
|
Quantity::float_from_rat(&base).log10()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn pow(&self, base: Quantity) -> Quantity {
|
||||||
|
match base {
|
||||||
|
Quantity::Rational { .. } => self.pow(Quantity::float_from_rat(&base)),
|
||||||
|
Quantity::Float { v } => Quantity::Float{v: FloatQ{ val: self.val.clone().pow(v.val) }}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
impl FloatBase for FloatQ {
|
||||||
|
fn from_f64(f: f64) -> Option<FloatQ> {
|
||||||
|
let v = Float::with_val(FLOAT_PRECISION, f);
|
||||||
|
return Some(FloatQ{ val: v });
|
||||||
|
}
|
||||||
|
|
||||||
|
fn from_string(s: &str) -> Option<FloatQ> {
|
||||||
|
let v = Float::parse(s);
|
||||||
|
let v = match v {
|
||||||
|
Ok(x) => x,
|
||||||
|
Err(_) => return None
|
||||||
|
};
|
||||||
|
|
||||||
|
return Some(
|
||||||
|
FloatQ{ val:
|
||||||
|
Float::with_val(FLOAT_PRECISION, v)
|
||||||
|
}
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
impl Add for FloatQ where {
|
||||||
|
type Output = Self;
|
||||||
|
|
||||||
|
fn add(self, other: Self) -> Self::Output {
|
||||||
|
Self { val: self.val + other.val}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl AddAssign for FloatQ where {
|
||||||
|
fn add_assign(&mut self, other: Self) {
|
||||||
|
self.val += other.val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Sub for FloatQ {
|
||||||
|
type Output = Self;
|
||||||
|
|
||||||
|
fn sub(self, other: Self) -> Self::Output {
|
||||||
|
Self {val: self.val - other.val}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl SubAssign for FloatQ where {
|
||||||
|
fn sub_assign(&mut self, other: Self) {
|
||||||
|
self.val -= other.val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Mul for FloatQ {
|
||||||
|
type Output = Self;
|
||||||
|
|
||||||
|
fn mul(self, other: Self) -> Self::Output {
|
||||||
|
Self {val: self.val * other.val}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl MulAssign for FloatQ where {
|
||||||
|
fn mul_assign(&mut self, other: Self) {
|
||||||
|
self.val *= other.val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Div for FloatQ {
|
||||||
|
type Output = Self;
|
||||||
|
|
||||||
|
fn div(self, other: Self) -> Self::Output {
|
||||||
|
Self {val: self.val / other.val}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl DivAssign for FloatQ where {
|
||||||
|
fn div_assign(&mut self, other: Self) {
|
||||||
|
self.val /= other.val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Neg for FloatQ where {
|
||||||
|
type Output = Self;
|
||||||
|
|
||||||
|
fn neg(self) -> Self::Output {
|
||||||
|
Self {val: -self.val}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Rem<FloatQ> for FloatQ {
|
||||||
|
type Output = Self;
|
||||||
|
|
||||||
|
fn rem(self, modulus: FloatQ) -> Self::Output {
|
||||||
|
if {
|
||||||
|
(!self.fract().is_zero()) ||
|
||||||
|
(!modulus.fract().is_zero())
|
||||||
|
} { panic!() }
|
||||||
|
|
||||||
|
FloatQ{val : self.val.fract() % modulus.val.fract()}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl PartialEq for FloatQ {
|
||||||
|
fn eq(&self, other: &Self) -> bool {
|
||||||
|
self.val == other.val
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl PartialOrd for FloatQ {
|
||||||
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||||
|
self.val.partial_cmp(&other.val)
|
||||||
|
}
|
||||||
|
}
|
|
@ -1,7 +1,68 @@
|
||||||
mod rationalq;
|
use std::ops::{
|
||||||
|
Add, Sub, Mul, Div,
|
||||||
|
Neg, Rem,
|
||||||
|
|
||||||
|
AddAssign, SubAssign,
|
||||||
|
MulAssign, DivAssign
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
mod rationalq;
|
||||||
|
mod floatq;
|
||||||
pub mod quantity;
|
pub mod quantity;
|
||||||
|
|
||||||
pub use crate::quantity::quantity::Quantity;
|
pub use crate::quantity::quantity::Quantity;
|
||||||
|
|
||||||
const FLOAT_PRECISION: u32 = 1024;
|
const FLOAT_PRECISION: u32 = 1024;
|
||||||
const PRINT_LEN: usize = 5; // How many significant digits we will show in output
|
const PRINT_LEN: usize = 5; // How many significant digits we will show in output
|
||||||
|
|
||||||
|
|
||||||
|
pub trait RationalBase: QuantBase {
|
||||||
|
fn from_frac(top: i64, bot: i64) -> Self;
|
||||||
|
fn from_f64(f: f64) -> Option<Self> where Self: Sized;
|
||||||
|
fn from_string(s: &str) -> Option<Self>where Self: Sized;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait FloatBase: QuantBase {
|
||||||
|
fn from_f64(f: f64) -> Option<Self> where Self: Sized;
|
||||||
|
fn from_string(s: &str) -> Option<Self> where Self: Sized;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait QuantBase:
|
||||||
|
Sized + ToString +
|
||||||
|
Add + AddAssign +
|
||||||
|
Sub + SubAssign +
|
||||||
|
Mul + MulAssign +
|
||||||
|
Div + DivAssign +
|
||||||
|
Neg + Rem +
|
||||||
|
PartialEq + PartialOrd
|
||||||
|
{
|
||||||
|
fn fract(&self) -> Quantity;
|
||||||
|
fn is_zero(&self) -> bool;
|
||||||
|
fn is_negative(&self) -> bool;
|
||||||
|
fn is_positive(&self) -> bool;
|
||||||
|
|
||||||
|
fn exp(&self) -> Quantity;
|
||||||
|
fn abs(&self) -> Quantity;
|
||||||
|
fn floor(&self) -> Quantity;
|
||||||
|
fn ceil(&self) -> Quantity;
|
||||||
|
fn round(&self) -> Quantity;
|
||||||
|
fn sin(&self) -> Quantity;
|
||||||
|
fn cos(&self) -> Quantity;
|
||||||
|
fn tan(&self) -> Quantity;
|
||||||
|
fn asin(&self) -> Quantity;
|
||||||
|
fn acos(&self) -> Quantity;
|
||||||
|
fn atan(&self) -> Quantity;
|
||||||
|
fn sinh(&self) -> Quantity;
|
||||||
|
fn cosh(&self) -> Quantity;
|
||||||
|
fn tanh(&self) -> Quantity;
|
||||||
|
fn asinh(&self) -> Quantity;
|
||||||
|
fn acosh(&self) -> Quantity;
|
||||||
|
fn atanh(&self) -> Quantity;
|
||||||
|
fn ln(&self) -> Quantity;
|
||||||
|
fn log10(&self) -> Quantity;
|
||||||
|
fn log2(&self) -> Quantity;
|
||||||
|
fn log(&self, base: Quantity) -> Quantity;
|
||||||
|
fn pow(&self, exp: Quantity) -> Quantity;
|
||||||
|
}
|
|
@ -1,6 +1,3 @@
|
||||||
use rug::Float;
|
|
||||||
use rug::ops::Pow;
|
|
||||||
|
|
||||||
use std::ops::{
|
use std::ops::{
|
||||||
Add, Sub, Mul, Div,
|
Add, Sub, Mul, Div,
|
||||||
Neg, Rem,
|
Neg, Rem,
|
||||||
|
@ -10,258 +7,150 @@ use std::ops::{
|
||||||
};
|
};
|
||||||
use std::cmp::Ordering;
|
use std::cmp::Ordering;
|
||||||
|
|
||||||
|
|
||||||
use crate::quantity::rationalq::RationalQ;
|
use crate::quantity::rationalq::RationalQ;
|
||||||
use crate::quantity::FLOAT_PRECISION;
|
use crate::quantity::floatq::FloatQ;
|
||||||
use crate::quantity::PRINT_LEN;
|
|
||||||
|
|
||||||
|
use crate::quantity::QuantBase;
|
||||||
|
use crate::quantity::RationalBase;
|
||||||
|
use crate::quantity::FloatBase;
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
#[derive(Clone)]
|
#[derive(Clone)]
|
||||||
pub enum Quantity {
|
pub enum Quantity {
|
||||||
Rational{ v: RationalQ },
|
Rational{ v: RationalQ },
|
||||||
Float{ v: Float }
|
Float{ v: FloatQ }
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ToString for Quantity{
|
|
||||||
fn to_string(&self) -> String {
|
|
||||||
let (sign, mut string, exp) = match self {
|
|
||||||
Quantity::Float { v } => { v.to_sign_string_exp(10, Some(PRINT_LEN)) }
|
|
||||||
Quantity::Rational { v } => { v.to_sign_string_exp(10, Some(PRINT_LEN)) }
|
|
||||||
};
|
|
||||||
|
|
||||||
// zero, nan, or inf.
|
|
||||||
let sign = if sign {"-"} else {""};
|
|
||||||
if exp.is_none() { return format!("{sign}{string}"); }
|
|
||||||
let exp = exp.unwrap();
|
|
||||||
|
|
||||||
// Remove trailing zeros.
|
|
||||||
// At this point, string is guaranteed to be nonzero.
|
|
||||||
while string.chars().last().unwrap() == '0' {
|
|
||||||
string.remove(string.len() - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
let exp_u: usize;
|
|
||||||
|
|
||||||
if exp < 0 {
|
|
||||||
exp_u = (-exp).try_into().unwrap()
|
|
||||||
} else {
|
|
||||||
exp_u = exp.try_into().unwrap()
|
|
||||||
}
|
|
||||||
|
|
||||||
if exp_u >= PRINT_LEN {
|
|
||||||
// Exponential notation
|
|
||||||
let pre = &string[0..1];
|
|
||||||
let post = &string[1..];
|
|
||||||
|
|
||||||
format!(
|
|
||||||
"{pre}{}{post}e{}",
|
|
||||||
if post.len() != 0 {"."} else {""},
|
|
||||||
//if exp > 0 {"+"} else {""},
|
|
||||||
exp - 1
|
|
||||||
)
|
|
||||||
} else {
|
|
||||||
if exp <= 0 { // Decimal, needs `0.` and leading zeros
|
|
||||||
format!(
|
|
||||||
"{sign}0.{}{string}",
|
|
||||||
"0".repeat(exp_u)
|
|
||||||
)
|
|
||||||
} else if exp_u < string.len() { // Decimal, needs only `.`
|
|
||||||
format!(
|
|
||||||
"{sign}{}.{}",
|
|
||||||
&string[0..exp_u],
|
|
||||||
&string[exp_u..]
|
|
||||||
)
|
|
||||||
} else { // Integer, needs trailing zeros
|
|
||||||
format!(
|
|
||||||
"{sign}{string}{}",
|
|
||||||
"0".repeat(exp_u - string.len())
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
macro_rules! quick_quant_fn {
|
|
||||||
( $x:ident ) => {
|
|
||||||
pub fn $x(&self) -> Quantity {
|
|
||||||
match self {
|
|
||||||
Quantity::Float { v } => {Quantity::Float{ v:v.clone().$x()}},
|
|
||||||
Quantity::Rational { v } => {v.$x()}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Quantity {
|
impl Quantity {
|
||||||
|
|
||||||
pub fn new_float(f: f64) -> Quantity {
|
pub fn new_rational(top: i64, bottom: i64) -> Quantity {
|
||||||
return Quantity::Float {
|
return Quantity::Rational {
|
||||||
v: Float::with_val(FLOAT_PRECISION, f)
|
v: RationalQ::from_frac(top, bottom)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn new_float_from_string(s: &str) -> Option<Quantity> {
|
pub fn new_float(v: f64) -> Quantity {
|
||||||
let v = Float::parse(s);
|
return Quantity::Float {
|
||||||
|
v: FloatQ::from_f64(v).unwrap()
|
||||||
let v = match v {
|
|
||||||
Ok(x) => x,
|
|
||||||
Err(_) => return None
|
|
||||||
};
|
|
||||||
|
|
||||||
return Some(Quantity::Float {
|
|
||||||
v: Float::with_val(FLOAT_PRECISION, v)
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
pub fn new_rational(top: i64, bottom: i64) -> Quantity {
|
|
||||||
return Quantity::Rational {
|
|
||||||
v: RationalQ::new(top, bottom)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn new_rational_from_string(s: &str) -> Option<Quantity> {
|
pub fn new_rational_from_string(s: &str) -> Option<Quantity> {
|
||||||
let r = RationalQ::from_string(s);
|
let r = RationalQ::from_string(s);
|
||||||
if r.is_none() { return None; }
|
if r.is_none() { return None; }
|
||||||
return Some(Quantity::Rational { v: r.unwrap() });
|
return Some(Quantity::Rational{v: r.unwrap()})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn new_rational_from_f64(f: f64) ->
|
pub fn new_float_from_string(s: &str) -> Option<Quantity> {
|
||||||
Option<Quantity> {
|
let v = FloatQ::from_string(s);
|
||||||
let r = RationalQ::from_f64(f);
|
if v.is_none() { return None; }
|
||||||
|
return Some(Quantity::Float{v: v.unwrap()})
|
||||||
if r.is_some() {
|
|
||||||
return Some(Quantity::Rational {
|
|
||||||
v: r.unwrap()
|
|
||||||
});
|
|
||||||
} else {
|
|
||||||
return None;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn new_rational_from_float_string(s: &str) -> Option<Quantity> {
|
pub fn float_from_rat(r: &Quantity) -> Quantity {
|
||||||
|
match &r {
|
||||||
// Scientific notation
|
Quantity::Float { .. } => r.clone(),
|
||||||
let mut sci = s.split("e");
|
Quantity::Rational { v } => Quantity::Float { v:
|
||||||
let num = sci.next().unwrap();
|
FloatQ::from(v.val.numer()).unwrap() /
|
||||||
let exp = sci.next();
|
FloatQ::from(v.val.denom()).unwrap()
|
||||||
|
|
||||||
let exp = if exp.is_some() {
|
|
||||||
let r = exp.unwrap().parse::<isize>();
|
|
||||||
match r {
|
|
||||||
Ok(x) => x,
|
|
||||||
Err(_) => return None
|
|
||||||
}
|
}
|
||||||
} else {0isize};
|
|
||||||
|
|
||||||
// Split integer and decimal parts
|
|
||||||
let mut dec = num.split(".");
|
|
||||||
let a = dec.next().unwrap();
|
|
||||||
let b = dec.next();
|
|
||||||
let b = if b.is_some() {b.unwrap()} else {""};
|
|
||||||
|
|
||||||
// Error conditions
|
|
||||||
if {
|
|
||||||
dec.next().is_some() || // We should have at most one `.`
|
|
||||||
sci.next().is_some() || // We should have at most one `e`
|
|
||||||
a.len() == 0 // We need something in the numerator
|
|
||||||
} { return None; }
|
|
||||||
|
|
||||||
let s: String;
|
|
||||||
if exp < 0 {
|
|
||||||
let exp: usize = (-exp).try_into().unwrap();
|
|
||||||
s = format!("{a}{b}/1{}", "0".repeat(b.len() + exp));
|
|
||||||
} else if exp > 0 {
|
|
||||||
let exp: usize = exp.try_into().unwrap();
|
|
||||||
s = format!(
|
|
||||||
"{a}{b}{}/1{}",
|
|
||||||
"0".repeat(exp),
|
|
||||||
"0".repeat(b.len())
|
|
||||||
);
|
|
||||||
} else { // exp == 0
|
|
||||||
s = format!("{a}{b}/1{}", "0".repeat(b.len()));
|
|
||||||
};
|
|
||||||
|
|
||||||
return Quantity::new_rational_from_string(&s);
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn to_float(&self) -> Float {
|
|
||||||
match self {
|
|
||||||
Quantity::Float { v } => {v.clone()},
|
|
||||||
Quantity::Rational { v } => {v.to_float()}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
quick_quant_fn!(fract);
|
|
||||||
quick_quant_fn!(exp);
|
|
||||||
|
|
||||||
quick_quant_fn!(abs);
|
|
||||||
quick_quant_fn!(floor);
|
|
||||||
quick_quant_fn!(ceil);
|
|
||||||
quick_quant_fn!(round);
|
|
||||||
quick_quant_fn!(sin);
|
|
||||||
quick_quant_fn!(cos);
|
|
||||||
quick_quant_fn!(tan);
|
|
||||||
quick_quant_fn!(asin);
|
|
||||||
quick_quant_fn!(acos);
|
|
||||||
quick_quant_fn!(atan);
|
|
||||||
quick_quant_fn!(sinh);
|
|
||||||
quick_quant_fn!(cosh);
|
|
||||||
quick_quant_fn!(tanh);
|
|
||||||
quick_quant_fn!(asinh);
|
|
||||||
quick_quant_fn!(acosh);
|
|
||||||
quick_quant_fn!(atanh);
|
|
||||||
|
|
||||||
quick_quant_fn!(ln);
|
|
||||||
quick_quant_fn!(log10);
|
|
||||||
quick_quant_fn!(log2);
|
|
||||||
|
|
||||||
pub fn log(&self, base: Quantity) -> Quantity {
|
|
||||||
match (&self, &base) {
|
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{v: a.clone().log10() / b.clone().log10()}},
|
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{v: a.clone().log10() / b.to_float().log10()}},
|
|
||||||
(Quantity::Rational{v:a}, _) => {a.log(base)}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn is_zero(&self) -> bool {
|
|
||||||
match self {
|
|
||||||
Quantity::Float { v } => {v.is_zero()},
|
|
||||||
Quantity::Rational { v } => {v.is_zero()}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn pow(&self, exp: Quantity) -> Quantity {
|
|
||||||
match self {
|
|
||||||
Quantity::Float { v } => {Quantity::Float {v: v.pow(exp.to_float())}},
|
|
||||||
Quantity::Rational { v } => {v.pow(exp) }
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn is_nan(&self) -> bool {
|
pub fn is_nan(&self) -> bool {
|
||||||
match self {
|
match self {
|
||||||
Quantity::Float { v } => {v.is_nan()},
|
Quantity::Float { v } => {v.val.is_nan()},
|
||||||
Quantity::Rational { .. } => {panic!()}
|
Quantity::Rational { .. } => {panic!()}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
pub fn is_negative(&self) -> bool {
|
|
||||||
match self {
|
|
||||||
Quantity::Float { v } => {v.is_sign_negative() && v.is_normal()},
|
|
||||||
Quantity::Rational { v } => {v.is_negative()}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn is_positive(&self) -> bool {
|
|
||||||
|
impl ToString for Quantity {
|
||||||
|
fn to_string(&self) -> String {
|
||||||
match self {
|
match self {
|
||||||
Quantity::Float { v } => {v.is_sign_positive() && v.is_normal()},
|
Quantity::Rational{v} => v.to_string(),
|
||||||
Quantity::Rational { v } => {v.is_positive()}
|
Quantity::Float{v} => v.to_string(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
macro_rules! quant_foward {
|
||||||
|
( $x:ident ) => {
|
||||||
|
fn $x(&self) -> Quantity {
|
||||||
|
match self {
|
||||||
|
Quantity::Rational{v} => v.$x(),
|
||||||
|
Quantity::Float{v} => v.$x(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl QuantBase for Quantity {
|
||||||
|
|
||||||
|
fn is_zero(&self) -> bool {
|
||||||
|
match self {
|
||||||
|
Quantity::Rational{v} => v.is_zero(),
|
||||||
|
Quantity::Float{v} => v.is_zero(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn is_negative(&self) -> bool {
|
||||||
|
match self {
|
||||||
|
Quantity::Rational{v} => v.is_negative(),
|
||||||
|
Quantity::Float{v} => v.is_negative(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn is_positive(&self) -> bool {
|
||||||
|
match self {
|
||||||
|
Quantity::Rational{v} => v.is_positive(),
|
||||||
|
Quantity::Float{v} => v.is_positive(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
quant_foward!(fract);
|
||||||
|
quant_foward!(abs);
|
||||||
|
quant_foward!(floor);
|
||||||
|
quant_foward!(ceil);
|
||||||
|
quant_foward!(round);
|
||||||
|
quant_foward!(sin);
|
||||||
|
quant_foward!(cos);
|
||||||
|
quant_foward!(tan);
|
||||||
|
quant_foward!(asin);
|
||||||
|
quant_foward!(acos);
|
||||||
|
quant_foward!(atan);
|
||||||
|
quant_foward!(sinh);
|
||||||
|
quant_foward!(cosh);
|
||||||
|
quant_foward!(tanh);
|
||||||
|
quant_foward!(asinh);
|
||||||
|
quant_foward!(acosh);
|
||||||
|
quant_foward!(atanh);
|
||||||
|
quant_foward!(exp);
|
||||||
|
quant_foward!(ln);
|
||||||
|
quant_foward!(log10);
|
||||||
|
quant_foward!(log2);
|
||||||
|
|
||||||
|
fn log(&self, base: Quantity) -> Quantity {
|
||||||
|
match self {
|
||||||
|
Quantity::Rational{v} => v.log(base),
|
||||||
|
Quantity::Float{v} => v.log(base),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fn pow(&self, base: Quantity) -> Quantity {
|
||||||
|
match self {
|
||||||
|
Quantity::Rational{v} => v.pow(base),
|
||||||
|
Quantity::Float{v} => v.pow(base),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
impl Neg for Quantity where {
|
impl Neg for Quantity where {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
|
@ -277,22 +166,22 @@ impl Add for Quantity {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn add(self, other: Self) -> Self::Output {
|
fn add(self, other: Self) -> Self::Output {
|
||||||
match (self, other) {
|
match (&self, &other) {
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a+b }},
|
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.clone()+b.clone() }},
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a+b.to_float() }},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {self + Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()+b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {Quantity::float_from_rat(&self) + other},
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a+b }},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a.clone()+b.clone() }},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl AddAssign for Quantity where {
|
impl AddAssign for Quantity where {
|
||||||
fn add_assign(&mut self, other: Self) {
|
fn add_assign(&mut self, other: Self) {
|
||||||
match (&mut *self, other) {
|
match (&mut *self, &other) {
|
||||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a += b},
|
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a += b.clone()},
|
||||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a += b.to_float()},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {*self += Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float()+b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {*self = Quantity::float_from_rat(self) + other },
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a += b},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a += b.clone()},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -301,22 +190,22 @@ impl Sub for Quantity {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn sub(self, other: Self) -> Self::Output {
|
fn sub(self, other: Self) -> Self::Output {
|
||||||
match (self, other) {
|
match (&self, &other) {
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a-b }},
|
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.clone()-b.clone() }},
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a-b.to_float() }},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {self - Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()-b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {Quantity::float_from_rat(&self) - other},
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a-b }},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a.clone()-b.clone() }},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl SubAssign for Quantity where {
|
impl SubAssign for Quantity where {
|
||||||
fn sub_assign(&mut self, other: Self) {
|
fn sub_assign(&mut self, other: Self) {
|
||||||
match (&mut *self, other) {
|
match (&mut *self, &other) {
|
||||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a -= b},
|
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a -= b.clone()},
|
||||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a -= b.to_float()},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {*self -= Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float()-b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {*self = Quantity::float_from_rat(self) - other },
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a -= b},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a -= b.clone()},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -325,47 +214,46 @@ impl Mul for Quantity {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn mul(self, other: Self) -> Self::Output {
|
fn mul(self, other: Self) -> Self::Output {
|
||||||
match (self, other) {
|
match (&self, &other) {
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a*b }},
|
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.clone()*b.clone() }},
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a*b.to_float() }},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {self * Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()*b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {Quantity::float_from_rat(&self) * self},
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a*b }},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a.clone()*b.clone() }},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl MulAssign for Quantity where {
|
impl MulAssign for Quantity where {
|
||||||
fn mul_assign(&mut self, other: Self) {
|
fn mul_assign(&mut self, other: Self) {
|
||||||
match (&mut *self, other) {
|
match (&mut *self, &other) {
|
||||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a *= b},
|
(Quantity::Float{v: a}, Quantity::Float{v:b}) => {*a *= b.clone()},
|
||||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a *= b.to_float()},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {*self *= Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float() * b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {*self = Quantity::float_from_rat(self) * other },
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a *= b},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a *= b.clone()},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
impl Div for Quantity {
|
impl Div for Quantity {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn div(self, other: Self) -> Self::Output {
|
fn div(self, other: Self) -> Self::Output {
|
||||||
match (self, other) {
|
match (&self, &other) {
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a/b }},
|
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.clone()/b.clone() }},
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a/b.to_float() }},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {self / Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()/b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {Quantity::float_from_rat(&self) / other},
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a/b }},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a.clone()/b.clone() }},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl DivAssign for Quantity where {
|
impl DivAssign for Quantity where {
|
||||||
fn div_assign(&mut self, other: Self) {
|
fn div_assign(&mut self, other: Self) {
|
||||||
match (&mut *self, other) {
|
match (&mut *self, &other) {
|
||||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a /= b},
|
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a /= b.clone()},
|
||||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a /= b.to_float()},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {*self /= Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float()/b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {*self = Quantity::float_from_rat(self) / other },
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a /= b},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a /= b.clone()},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -373,12 +261,12 @@ impl DivAssign for Quantity where {
|
||||||
impl Rem<Quantity> for Quantity {
|
impl Rem<Quantity> for Quantity {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn rem(self, modulus: Quantity) -> Self::Output {
|
fn rem(self, other: Quantity) -> Self::Output {
|
||||||
match (self, modulus) {
|
match (&self, &other) {
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a%b }},
|
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.clone()%b.clone() }},
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a%b.to_float() }},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {self % Quantity::float_from_rat(&other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()%b }},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {Quantity::float_from_rat(&self) % other},
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational { v: a%b }},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational { v: a.clone()%b.clone() }},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -387,8 +275,8 @@ impl PartialEq for Quantity {
|
||||||
fn eq(&self, other: &Self) -> bool {
|
fn eq(&self, other: &Self) -> bool {
|
||||||
match (self, other) {
|
match (self, other) {
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {a == b},
|
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {a == b},
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {*a==b.to_float()},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {*self == Quantity::float_from_rat(other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {a.to_float()==*b},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {Quantity::float_from_rat(self) == *other},
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {a == b},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {a == b},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -398,13 +286,9 @@ impl PartialOrd for Quantity {
|
||||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||||
match (self, other) {
|
match (self, other) {
|
||||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {a.partial_cmp(b)},
|
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {a.partial_cmp(b)},
|
||||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {(*a).partial_cmp(&b.to_float())},
|
(Quantity::Float{ .. }, Quantity::Rational{ .. }) => {(*self).partial_cmp(&Quantity::float_from_rat(other))},
|
||||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {a.to_float().partial_cmp(b)},
|
(Quantity::Rational{ .. }, Quantity::Float{ .. }) => {Quantity::float_from_rat(self).partial_cmp(other)},
|
||||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {a.partial_cmp(b)},
|
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {a.partial_cmp(b)},
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,3 @@
|
||||||
use rug::Float;
|
|
||||||
use rug::ops::Pow;
|
|
||||||
use rug::Rational;
|
use rug::Rational;
|
||||||
use rug::Integer;
|
use rug::Integer;
|
||||||
|
|
||||||
|
@ -15,20 +13,19 @@ use std::cmp::Ordering;
|
||||||
|
|
||||||
|
|
||||||
use crate::quantity::Quantity;
|
use crate::quantity::Quantity;
|
||||||
use crate::quantity::FLOAT_PRECISION;
|
use crate::quantity::QuantBase;
|
||||||
|
use crate::quantity::RationalBase;
|
||||||
|
|
||||||
macro_rules! rational {
|
macro_rules! wraprat {
|
||||||
( $x:expr ) => {
|
( $x:expr ) => { Quantity::Rational{v: $x} }
|
||||||
Quantity::Rational { v: RationalQ {
|
|
||||||
val : $x
|
|
||||||
}}
|
|
||||||
};
|
|
||||||
}
|
}
|
||||||
|
|
||||||
macro_rules! float {
|
macro_rules! float_foward {
|
||||||
( $x:expr ) => {
|
( $x:ident ) => {
|
||||||
Quantity::Float { v: $x }
|
fn $x(&self) -> Quantity {
|
||||||
};
|
Quantity::float_from_rat(&wraprat!(self.clone())).$x()
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
|
@ -37,94 +34,138 @@ pub struct RationalQ where {
|
||||||
pub val: Rational
|
pub val: Rational
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ToString for RationalQ {
|
/*
|
||||||
|
fn to_string_radix(&self, radix: i32, num_digits: Option<usize>) -> String {
|
||||||
|
self.to_float().to_string_radix(radix, num_digits)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn to_sign_string_exp(&self, radix: i32, num_digits: Option<usize>) -> (bool, String, Option<i32>) {
|
||||||
|
self.to_float().to_sign_string_exp(radix, num_digits)
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
impl ToString for RationalQ{
|
||||||
fn to_string(&self) -> String {
|
fn to_string(&self) -> String {
|
||||||
self.to_float().to_string()
|
let v = Quantity::float_from_rat(&wraprat!(self.clone()));
|
||||||
|
return v.to_string();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl RationalQ {
|
impl QuantBase for RationalQ {
|
||||||
pub fn new(top: i64, bot: i64) -> RationalQ {
|
|
||||||
|
fn fract(&self) -> Quantity {
|
||||||
|
wraprat!(RationalQ{val: self.val.clone().fract_floor(Integer::new()).0})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn is_zero(&self) -> bool {self.val == Rational::from((0,1))}
|
||||||
|
fn is_negative(&self) -> bool { self.val.clone().signum() == -1 }
|
||||||
|
fn is_positive(&self) -> bool { self.val.clone().signum() == 1 }
|
||||||
|
|
||||||
|
fn abs(&self) -> Quantity {wraprat!(RationalQ{val: self.val.clone().abs()})}
|
||||||
|
fn floor(&self) -> Quantity {wraprat!(RationalQ{val: self.val.clone().floor()})}
|
||||||
|
fn ceil(&self) -> Quantity {wraprat!(RationalQ{val: self.val.clone().ceil()})}
|
||||||
|
fn round(&self) -> Quantity {wraprat!(RationalQ{val: self.val.clone().round()})}
|
||||||
|
|
||||||
|
float_foward!(sin);
|
||||||
|
float_foward!(cos);
|
||||||
|
float_foward!(tan);
|
||||||
|
float_foward!(asin);
|
||||||
|
float_foward!(acos);
|
||||||
|
float_foward!(atan);
|
||||||
|
|
||||||
|
float_foward!(sinh);
|
||||||
|
float_foward!(cosh);
|
||||||
|
float_foward!(tanh);
|
||||||
|
float_foward!(asinh);
|
||||||
|
float_foward!(acosh);
|
||||||
|
float_foward!(atanh);
|
||||||
|
|
||||||
|
float_foward!(exp);
|
||||||
|
float_foward!(ln);
|
||||||
|
float_foward!(log10);
|
||||||
|
float_foward!(log2);
|
||||||
|
|
||||||
|
fn log(&self, base: Quantity) -> Quantity {
|
||||||
|
Quantity::float_from_rat(&wraprat!(self.clone())).log10() / base.log10()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn pow(&self, base: Quantity) -> Quantity {
|
||||||
|
Quantity::float_from_rat(&wraprat!(self.clone())).pow(base)
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
impl RationalBase for RationalQ {
|
||||||
|
fn from_frac(top: i64, bot: i64) -> RationalQ {
|
||||||
return RationalQ {
|
return RationalQ {
|
||||||
val: Rational::from((top, bot))
|
val: Rational::from((top, bot))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn is_zero(&self) -> bool{
|
fn from_f64(f: f64) -> Option<RationalQ> {
|
||||||
return self.val == Rational::from((0,1));
|
|
||||||
}
|
|
||||||
pub fn fract(&self) -> Quantity {
|
|
||||||
rational!(self.val.clone().fract_floor(Integer::new()).0)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn from_f64(f: f64) -> Option<RationalQ> {
|
|
||||||
let v = Rational::from_f64(f);
|
let v = Rational::from_f64(f);
|
||||||
if v.is_none() { return None }
|
if v.is_none() { return None }
|
||||||
return Some(RationalQ{ val: v.unwrap() });
|
return Some(RationalQ{ val: v.unwrap() });
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn from_string(s: &str) -> Option<RationalQ> {
|
fn from_string(s: &str) -> Option<RationalQ> {
|
||||||
let v = Rational::from_str_radix(s, 10);
|
// Scientific notation
|
||||||
let v = match v {
|
let mut sci = s.split("e");
|
||||||
|
let num = sci.next().unwrap();
|
||||||
|
let exp = sci.next();
|
||||||
|
|
||||||
|
let exp = if exp.is_some() {
|
||||||
|
let r = exp.unwrap().parse::<isize>();
|
||||||
|
match r {
|
||||||
|
Ok(x) => x,
|
||||||
|
Err(_) => return None
|
||||||
|
}
|
||||||
|
} else {0isize};
|
||||||
|
|
||||||
|
// Split integer and decimal parts
|
||||||
|
let mut dec = num.split(".");
|
||||||
|
let a = dec.next().unwrap();
|
||||||
|
let b = dec.next();
|
||||||
|
let b = if b.is_some() {b.unwrap()} else {""};
|
||||||
|
|
||||||
|
// Error conditions
|
||||||
|
if {
|
||||||
|
dec.next().is_some() || // We should have at most one `.`
|
||||||
|
sci.next().is_some() || // We should have at most one `e`
|
||||||
|
a.len() == 0 // We need something in the numerator
|
||||||
|
} { return None; }
|
||||||
|
|
||||||
|
let s: String;
|
||||||
|
if exp < 0 {
|
||||||
|
let exp: usize = (-exp).try_into().unwrap();
|
||||||
|
s = format!("{a}{b}/1{}", "0".repeat(b.len() + exp));
|
||||||
|
} else if exp > 0 {
|
||||||
|
let exp: usize = exp.try_into().unwrap();
|
||||||
|
s = format!(
|
||||||
|
"{a}{b}{}/1{}",
|
||||||
|
"0".repeat(exp),
|
||||||
|
"0".repeat(b.len())
|
||||||
|
);
|
||||||
|
} else { // exp == 0
|
||||||
|
s = format!("{a}{b}/1{}", "0".repeat(b.len()));
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// From fraction string
|
||||||
|
let r = Rational::from_str_radix(&s, 10);
|
||||||
|
let r = match r {
|
||||||
Ok(x) => x,
|
Ok(x) => x,
|
||||||
Err(_) => return None
|
Err(_) => return None
|
||||||
};
|
};
|
||||||
return Some(RationalQ{ val: v });
|
|
||||||
|
return Some(RationalQ{val: r});
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn to_float(&self) -> Float {
|
|
||||||
Float::with_val(FLOAT_PRECISION, self.val.numer()) /
|
|
||||||
Float::with_val(FLOAT_PRECISION, self.val.denom())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn to_string_radix(&self, radix: i32, num_digits: Option<usize>) -> String {
|
|
||||||
self.to_float().to_string_radix(radix, num_digits)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn to_sign_string_exp(&self, radix: i32, num_digits: Option<usize>) -> (bool, String, Option<i32>) {
|
|
||||||
self.to_float().to_sign_string_exp(radix, num_digits)
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
pub fn is_negative(&self) -> bool { self.val.clone().signum() == -1 }
|
|
||||||
pub fn is_positive(&self) -> bool { self.val.clone().signum() == 1 }
|
|
||||||
|
|
||||||
pub fn exp(&self) -> Quantity {float!(self.to_float().exp())}
|
|
||||||
|
|
||||||
pub fn abs(&self) -> Quantity {rational!(self.val.clone().abs())}
|
|
||||||
pub fn floor(&self) -> Quantity {rational!(self.val.clone().floor())}
|
|
||||||
pub fn ceil(&self) -> Quantity {rational!(self.val.clone().ceil())}
|
|
||||||
pub fn round(&self) -> Quantity {rational!(self.val.clone().round())}
|
|
||||||
|
|
||||||
pub fn sin(&self) -> Quantity {float!(self.to_float().sin())}
|
|
||||||
pub fn cos(&self) -> Quantity {float!(self.to_float().cos())}
|
|
||||||
pub fn tan(&self) -> Quantity {float!(self.to_float().tan())}
|
|
||||||
pub fn asin(&self) -> Quantity {float!(self.to_float().asin())}
|
|
||||||
pub fn acos(&self) -> Quantity {float!(self.to_float().acos())}
|
|
||||||
pub fn atan(&self) -> Quantity {float!(self.to_float().atan())}
|
|
||||||
|
|
||||||
pub fn sinh(&self) -> Quantity {float!(self.to_float().sinh())}
|
|
||||||
pub fn cosh(&self) -> Quantity {float!(self.to_float().cosh())}
|
|
||||||
pub fn tanh(&self) -> Quantity {float!(self.to_float().tanh())}
|
|
||||||
pub fn asinh(&self) -> Quantity {float!(self.to_float().asinh())}
|
|
||||||
pub fn acosh(&self) -> Quantity {float!(self.to_float().acosh())}
|
|
||||||
pub fn atanh(&self) -> Quantity {float!(self.to_float().atanh())}
|
|
||||||
|
|
||||||
pub fn ln(&self) -> Quantity {float!(self.to_float().ln())}
|
|
||||||
pub fn log10(&self) -> Quantity {float!(self.to_float().log10())}
|
|
||||||
pub fn log2(&self) -> Quantity {float!(self.to_float().log2())}
|
|
||||||
|
|
||||||
pub fn log(&self, base: Quantity) -> Quantity {
|
|
||||||
float!(self.to_float().log10() / base.to_float().log10())
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
pub fn pow(&self, exp: Quantity) -> Quantity {
|
|
||||||
float!(self.to_float().pow(exp.to_float()))
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
impl Add for RationalQ where {
|
impl Add for RationalQ where {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
|
|
|
@ -2,7 +2,7 @@ use std::collections::VecDeque;
|
||||||
|
|
||||||
use crate::tokens::Token;
|
use crate::tokens::Token;
|
||||||
use crate::tokens::Operator;
|
use crate::tokens::Operator;
|
||||||
|
use crate::quantity::QuantBase;
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
#[derive(Copy, Clone)]
|
#[derive(Copy, Clone)]
|
||||||
|
|
|
@ -4,6 +4,7 @@ use std::cmp::Ordering;
|
||||||
use crate::tokens::Token;
|
use crate::tokens::Token;
|
||||||
use crate::tokens::Function;
|
use crate::tokens::Function;
|
||||||
use crate::quantity::Quantity;
|
use crate::quantity::Quantity;
|
||||||
|
use crate::quantity::QuantBase;
|
||||||
|
|
||||||
/// Operator types, in order of increasing priority.
|
/// Operator types, in order of increasing priority.
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
|
|
Loading…
Reference in New Issue